

UNIVERSITY OF KERALA

REVISED SYLLABI FOR
FIRST DEGREE PROGRAMME IN
PHYSICS
UNDER
**CHOICE BASED-CREDIT & SEMESTER-
SYSTEM (CBCSS)**

(2018 admission onwards)

AIM AND OBJECTIVES OF THE PROGRAMME

In this programme, we aim to provide a solid foundation in all aspects of Physics and to show a broad spectrum of modern trends in physics and to develop experimental, computational and mathematical skills of students. The syllabi are framed in such a way that it bridges the gap between the plus two and post graduate levels of physics by providing more or less complete and logical framework in almost all areas of basic Physics.

The programme also aims to

- (i) Provide education in physics of the highest quality at the undergraduate level and generate graduates of the calibre sought by industries and public service as well as academic teachers and researchers of the future.
- (ii) Attract outstanding students from all backgrounds.
- (iii) Provide an intellectually stimulating environment in which the students have the opportunity to develop their skills and enthusiasms to the best of their potential.
- (iv) Maintain the highest academic standards in undergraduate teaching.
- (v) Impart the skills required to gather information from resources and use them.
- (vi) Equip the students in methodology related to Physics.

Objectives

By the end of the first year (2nd semester), the students should have,

- (i) Attained a common level in basic mechanics and properties of matter and laid a secure foundation in mathematics for their future courses.
- (ii) Developed their experimental and data analysis skills through a wide range of experiments in the practical laboratories.

By the end of the fourth semester, the students should have

- i. Been introduced to powerful tools for tackling a wide range of topics in Thermodynamics, Electrodynamics, Classical Mechanics and Relativistic Mechanics.
- ii. Become familiar with additional relevant mathematical techniques.
- iii. Further developed their experimental skills through a series of experiments which also illustrate major themes of the lecture courses.

By the end of the sixth semester, the students should have

- i. Covered a range of topics in almost all areas of physics including Quantum Physics, Solid State Physics, Computational Physics, Electronics etc.
- ii. Had experience of independent work such as projects, seminars etc.
- iii. Developed their understanding of core Physics.

I. General Structure for the First-Degree Programme in Physics

Sem.

No.

Course title
Instructional
hours/week
Credit
University. Exam
duration
Evaluation
Total
credit

L
P

Internal
Uty.

Exam

I
EN1111 English Lang I
5

4
3 hours

1111 Addl Lang I
4

3
”

EN1121 Foun Course I
4
2
”
20%
80%
16

PY1141 Core Course I
2
2
”

Core pract. I

-
2
-
-

MM1131.1 Compl. Course I
2
2
3
3 hours

Compl. Course II

2

2

2

”

(CH1131.1/ST1131.2/PCH1131.7/EL1131)

II

EN1211 Eng Lang. II

5

4

3 hours

EN1212 Eng Lang. III

4

3

”

1211 Addl Lang. II
4

3
"
20%
80%
17

PY1241 Core Course II
2

2
"

Core pract. I
2

MM1231.1 Compl. Course III
2
2-
3
"

Compl. Course IV
2
2
2
"
6

(CH1231.1/ST1231.2/ PCH1231.7/EL1231)

III

EN1311 Eng Lang. IV

5

4

3 hours

1311 Addl Lang. III

5

4

”

PY1341 Core Course II

3

-

3

”

20%
80%
18

Core Pract I

-
-
-
-

2

MM1331.1 Compl. Course V

3
2
4
3 hours

Compl. Course VI

3
2
3
,,

(CH1331.1/ST1331.2/PCH1331.7/EL1331)

20% 80%

IV
EN1411 Eng Lang. V
5

4
3 hours

1411Addl Lang. IV
5

4
"

PY1441Core Course III
3

3
"

80%	80%	
		25
PY 1442 Core (Pract I) IV		
		2
3		
”		
MM1431.1 Compl. Course VII		
5		
4		
3 hours		
Compl. Course VIII		
3		
3		
”		
(CH1431.1/ST1431.2/ PCH1431.7/EL1431)		
Compl. (Practical) IX		
	10	

2

4

”

(CH1432.1/ST1432.2/ PCH1432.7/EL1432)

V

PY1541 Core Course V

4

4

3 hours

PY1542 Core Course VI

4

4

”

PY1543 Core Course VII

PY1544 Core Course VIII

4

4

，

Core (PracticalII)

4

Open Course

3

2

3 hours

(PY1551.1/PY1551.2/

PY1551.3/PY1551.4/

PY1551.5)

Project

-

2

-

-

VI

PY1641 Core Course IX

4

80%	80%	
4		
3 hours		
PY1642 Core Course X		
4		
4		
”		
PY1643 Core Course XI		
4		
4		
”		
		26
PY1644 Core Course XII		
4		
3		
”		
PY1645 Core (Pract II) XIII		
2		2
	14	

”	
PY1646 Core (Pract III) XIV	
-	2
3	
”	
Elective Course	
3	
-	
2	
”	
(PY1661.1/PY1661.2/	
PY1661.3/PY1661.4/	
PY1661.5)	

PY1647 Project and Research

-

2

4

-

Institute/Science Museum visit

II. Course structure:(1a). Core Courses (theory)

Sem.	Title of paper	Number of hours per week	Number of credits	Total hours/semester	UE	Dura	tion
1	PY1141 – Basic mechani cs & P r o p e rt i e s o f m a tt e r	2	2	36	3 hrs		
2	PY1241 - Heat	2	2	36	3		

&
Thermo
dynamic
s

3 PY1341 3 3 54 3

-
Electrod
ynamics

4 PY1441 3 3 54 3

-
Classica
l &
Relativi
stic
Mechani
cs

PY1541- 4 4 72 3
Quantum
Mechanic
s

PY1542 4 4 72 3

-
Statistic
al
Mechani
cs
Researc
h
Method
ology
and
Disaster
Manage

	ment			
5				
	PY1543	4	4	72
	–			3
	Electron			
	ics			
	PY1544	4	4	72
	–Atomic			3
	&			
	M			
	o			
	l			
	e			
	c			
	u			
	l			
	a			
	r			
	p			
	h			
	y			
	s			
	i			
	c			
	s			
	PY1551	3	2	54
	– Open			3
	course			
	PY1641	4	4	72
	-Solid			3
	State			
	Physics			

	PY1642	4	4	72	3
	–				
	Nuclear				
	&				
	Particle				
	Physics				
6	PY1643	4	4	72	3
	–				
	Classica				
	l &				
	Modern				
	O				
	pt				
	ic				
	s				
	PY1644	4	3	72	3
	-Digital				
	Electron				
	ics &				
	Comput				
	er				
	Science				
	PY1661	3	2	54	3
	–				
	Elective				
	Course				

(1b). COURSE STRUCTURE FOR PRACTICAL AND PROJECT WORK

FOR THE CORE COURSE:

Sem	Title of Paper	Duration of Exam	Number Of Credits	IA	Weightage	UE	Allotted hours	
							Per week	Per year
4	PY144 2- Basic Physic s Lab 1	3	3	1	3		S1--- 2 S2--- 2 S3--- 2 S4— 2	144
6	PY164 5- Advanc ed Physic s Lab 2	3	2	1	3		S5--- 2 S6— 2	72
	PY164 6- Advanc ed	3	3	1	3		S5--- 2	72

	Physic s Lab 3						
6						S6— 2	
6	PY- 1647- Projec t	-	4	-	4	S5-2 S6-2	72

2(a). Complementary Courses (General structure)

Se me ster	The ory		Pra ctic al			
	Nu mb er of hou rs/ wee k	Nu mb er of cre dits	Total hou rs/s em	nu mb er of hou rs/ wee k	Nu mb er of cre dits	
1	2	2	36	2	-	
2	2	2	36	2	-	
3	3	3	54	2	-	

4	3	3	54	2	4
---	---	---	----	---	---

(2b). COMPLEMENTARY COURSES (Theory and Practical)

1. Physics for Mathematics B.Sc Programme

Se me Ster	Title of the cour se	No. of hour s/	No. of cred its	Total cred its	Total hou rs	UE
		wee k				per sem .
1	PY1 131. 1- Mec hani cs & prop erties of matte r	2	2	2	36	3
	Prac tical	2			36	
2	PY1 231. 1- Ther mal	2	2	2	36	3

		Phy sics and stati stica l mec hani cs					
		Prac tical	2			36	
3	PY1 331. 1- Opti cs,m agne tism & elect ricit y	3	3	3	54	3	
	Prac tical	2			36		
4	PY1 431- Mod ern Phy sics &	3	3	7		3	
	Elec troni cs						

	PY1 432- Prac tical	2	4		36	
--	------------------------------	---	---	--	----	--

2. Physics for Chemistry B.Sc Programmes

Se me Ste r	Tit le of the cou rse	No. of	No. of hou rs/	Tot al cre dits	Tot al cre dits	UE hou rs	wee k	sem per	dur atio n
1	PY1 131. 2- Rot atio nal & dyn ami cs s Mat ter	2	2	2	36	3			
	Prac tic al								
2	PY 123	2	2	2	36	3			

	1.2- The rma l Phy sics							
	Pra ctic al		2			36		
3	PY 133 1.2- Ma gne tis m & Ele ctri city	Opt ics,		3	3	3	54	3
	Pra ctic al		2				36	
4	PY 143 1.2- Ato mic Qua ntu m Elec tron ics	phys ics, mec hani cs &	3	3	7	54	3	
	PY 143		2	4		36	3	

2- Prac- tic- al

3. Physics for Statistics B.Sc Programme

Se me ster	Title of the cour se	No. of	No. of hour s/	Total cred its	Total Cre dits	UE hour s	dura tion
				wee k	per sem.		
1	PY1 131. 3- Mec hani cs & prop ertie s of matt er	2	2	2	36	3	
	Prac tical		2		36		
2	PY1 231. 3- & stati stica l mec hani cs	The rma l	Phys ics	2	2	36	3

	Pra ctic al		2		36		
3	PY1 331. Opti cs, 3- Mag neti sm & elec trici ty Pra ctic al	3	3	3	54	3	
4	PY1 431. Mo der n & Elec tron ics PY1 432- Prac tical	phys ics	3	3	7	54	3

4. Physics for Geology B.Sc Programme

Semester	Title of the course	No. of	No. of hours/ week	Total credits	Total credits	UE hours	per sem.	duration
1	PY1 131. 4- prop erties of matt er	Me cha nics &	2	2	2	36	3	
	Practical		2			36		
2	PY1 231. 4- Phys ics & Phys ics of the Eart h Pract ical	Ther mal	2	2	2	36	3	
			2			36		

3	PY1 331. 4- elect rody nami cs Pract ical	O pti cs and	3	3	3	54	3	
4	PY1 431. 4- rn Phys ics, cryst alog raph y	Mode Elect ronic &	3	3	7	54	3	
	PY1 432- Pract ical		2	4		36	3	

5. Physics for Home Science B.Sc Programme

Semester	Title of the course	No. of hours/ week	No. of credits	Total credits	Total hours	UE	Duration
1	PY11 31.5- Mechanics & proper- ties of matter	2	2	2	36	3	
	Practical	2			36		
2	PY12 31.5- Ther- mal Physi- cs	2	2	2	36	3	
	Practical	2			36		
3	PY13 31.5- Optics and	3	3	3	54	3	

	electri city Practi cal	2			36		
4	PY14 31.5- Atomi c s & Electr onics	3	3	7	54	3	
	PY14 32- Practi cal	2	4		36	3	

6. Electronics for Physics B.Sc Programme

Semester	Title of the course	No. of hours/ week	No. of credits	Total credits	Total hours per sem.	UE	Duration
1	EL11 31- Electronics I	2	2	2	36	3	
	Practical	2			36		
2	EL12 31- Electronics II	2	2	2	36	3	
	Practical	2			36		
3	EL13 31- Electronics III	3	3	3	54	3	

	Practical	2			36		
4	EL14 31- Electr onics IV	3	3	7	54	3	
	EL14 32- Practi cal	2	4		36	3	

7. Physics for Polymer Chemistry B.Sc Programme

Se me Ste r	Tit le of the cou rse	No. of	No. of hou rs/ wee k	Tot al cre dits	Tot al cre dits	UE hou rs	dur atio n per sem .
1	PY1 131. 7- Mec hani cs and Flui d	2	2	2	36	3	

		dyna mics							
		of							
		Pra ctic al		2			36		
2	PY 123 1.7- The rma l Phy sics		2	2	2	36	3		
	Pra ctic al			2			36		
3	PY 133 1.7- Mo der n Opt ics & Ele ctri city			3	3	3	54	3	
	Pra ctic al								
4	PY 143	Phys ics	3	3	7	54	3	36	

1.7- Ato mic and Ele ctro nics	&						
PY 143 2- Pra ctic al		2	4		36	3	

III. QUESTION PAPER PATTERN

For all semesters

1. The examination has duration of 3 hours
2. Each question paper has four parts A, B, C & D.
3. Part A contains 10 questions and the candidate has to answer all questions. Each question carries 1mark. The answer may be in the forms-one word/one sentence
4. Part B contains 12 short answer questions. Out of these 12 questions, the candidate has to answer 8 questions. Each question carries 2marks.
5. Part C contains 9 questions of which the candidate has to answer 6 of them. Each question carries 4 marks.
6. Part D contains 4 long answer questions (essays) of which the candidate has to answer 2 questions. Each question carries 15 marks.
7. The total weightage for the entire questions to be answered is 80 marks.

QUESTION PAPER PATTERN FOR TEST

Questi on No	Type of Questi on	Marks
-----------------	----------------------------	-------

	Questi on	
--	--------------	--

Part	10	One	10
------	----	-----	----

A : 1-		word/	
--------	--	-------	--

10		One	
		senten	
		ce	

Part	8	out	16
------	---	-----	----

B : 11-		of 12;	
---------	--	--------	--

22		Short	
		answer	

Part	6	out	24
------	---	-----	----

C : 23-		of 9;	
---------	--	-------	--

31		Short	
		essay/	
		proble	
		m	

Part	2	out	30
------	---	-----	----

D : 32-		of 4;	
---------	--	-------	--

35		Essay	
----	--	-------	--

Total= 80 marks

V. OPEN/ELECTIVE COURSES

During the programme the students have to undergo two open/elective courses. The students attached to the Physics department can opt one course from the Physics department (Elective course) and the other from any one of the other departments (Open course). The student has to do the open course during the fifth semester and the elective course during the sixth semester. As a beginning, the department will choose one open course for the fifth semester and one elective course for the sixth semester depending on the faculty and infrastructure available.

(a). Open Courses.

- i) Bio-Physics
- ii) Astronomy & Astrophysics
- iii) Applied Physics
- iv) Environmental Physics
- v) Energy Physics

(b). Elective Courses.

- i) Photonics
- ii) Nano science
- iii) Computer hardware and networking
- iv) Instrumentation
- v) Space Science

VI. IMPLEMENTATION OF PROJECT WORK AND STUDY TOUR(RESEARCH INSTITUTE/SCIENCE MUSEUM VISIT)

As part of study the candidate has to do a project work. The aim of the project work is to bring out the talents of students and to introduce research methodology. The work may be chosen from any branch of Physics, which may be experimental, theoretical or computational. Emphasis should be given for originality of approach. The project shall be done individually or as a group of maximum 5 students. The projects are to be identified during the 4th semester with the help of the supervising teacher. The report of the project (of about 30-40 pages) in duplicate shall be submitted to the department by the end of the 6th semester well before the commencement of the examination. The reports are to be produced before the external examiners appointed by the University for valuation.

STUDY TOUR

Students are directed to visit one research institute /science museum preferably within the state of Kerala. Scientifically prepared hand-written study tour report must be submitted by each student for ESE on the day of the examination of project evaluation.

VII. CONTINUOUS EVALUATION

There will be continuous evaluation (CE) based on continuous assessment and end semester examination (ESE) for each course. CE carries 20 marks based on specific components such as attendance, tests, assignments, seminars etc. and ESE 80 marks. Out of the 20marks in internal assessment, 5marks shall be given to attendance, 10 marks to test papers, 5marks to seminar / assignments (minimum one test & one assignment). The components of the internal evaluation for theory and practical and their marks are given below.

(a). Theory

No	Component	marks
1	Attendance	5
2	Assignment	5
3	Test paper	10
	Total	20

The continuous evaluation (CE) shall be based on periodic written tests, assignments, viva/ seminar and attendance in respect of theory courses. **Written Tests:** Each test paper may have duration of minimum 3 hours. For each course there shall be a minimum of one written test during a semester. **Assignments:** Each student is required to submit one assignment for a theory course. **Seminar / Viva:** For each theory course, performance of a student shall also be assessed by conducting a viva – voce examination or seminar presentation based on topics in that course.

(b). Continuous Evaluation CE (Practical)

No	Component	Marks
1	Attendance	5
2	Skill & Punctuality	5
3	Laboratory record	5
4	Test (internal exam)	5
	Total	20

Lab skill is to be assessed based on the performance of the student in practical classes. Minimum one practical test paper and an internal viva – voce examination based on the experiments done in the lab are to be conducted in each practical course. The laboratory record should contain an index and a certificate page. Separate records are to be used for each practical course. **A candidate shall be permitted to attend an end semester practical examination only if he / she submit a certified record with a minimum of 10 experiments.** This is to be

endorsed by the examiners.

The **evaluation of certified record** shall be according to the scheme given below.

No of experiments recorded	Marks
18	10
16	9
14	8
12	7
10	6

(c) The allotment of marks for attendance shall be as follows.

	% of attendance	Marks
	Attendance less than 50%	0
	51%-60%	1
Attendance	61%-70%	2
	71%-80%	3
	81%-90%	4
	91%-100%	5

(d) Tests, Assignments and Seminars

For each course there shall be at least two class tests during a semester. Marks for the test in continuous evaluation shall be awarded on the basis of the marks secured for the better of the two tests. Valued answer scripts shall be made available to the students for perusal within 10 working days from the date of the test.

Each student shall be required to do one assignment and one seminar for each course. Valued assignments shall be returned to the students. The seminars shall be organized by the teacher in charge and the same shall be assessed by a group of teachers including the teacher in charge of that course.

VIII. END SEMESTER EXAMINATION (ESE)

The external theory examinations of all semesters shall be conducted by the University. There will be no supplementary examinations. For reappearance/improvement, as per university rules, the students can appear along with the next batch.

IX. EVALUATION OF PROJECT AND TOUR REPORT

The evaluation of the project shall be done by two external examiners according to the scheme given above. Each candidate shall be evaluated separately. There shall be a maximum of 12 candidates per session with two sessions per day. However, there shall be no continuous evaluation for the project.

The **evaluation of project** shall be according to the scheme given below.

Component	Marks
Originality of approach	15
Relevance of the topic	10
Involvement	10
Viva-voce	15
Presentation of report	20
Research Institute/Science museum visit and Report	30

Evaluation of Tour report

The evaluation of tour report shall be according to the scheme given below

Component	Marks
Presentation of the report	10
Certified report	20

X. EVALUATION OF PRACTICAL EXAMINATION

The practical examinations for the core subject shall be conducted by the University at the end of semesters 4 and 6 with a common time table and questions set by the University. Similarly, the practical examination for the complementary course shall be conducted by the University at the end of the 4th semester. The examiners shall be selected from a panel of experts prepared by the University.

For each examination centre there shall be two external examiners and one internal examiner who is not in charge of the practical at that centre. The mark sheet duly certified by the head of the institution should be sent to the University

before the commencement of the end semester examinations.

The evaluation scheme for the end semester practical examinations shall be as follows.

Component	Marks
Formula, circuit,graph, brief procedure	20
Setting and experimental skill	15
Observations and tabulations	15
Substitution, calculation, result with correct unit	20
Certified record with 18 experiments	10
Total	80

For electronics experiments, the scheme shall be as follows.

Component	Marks
Formula, circuit,graph, brief procedure	20
Observations, skill and	25

tabulations	
Substitution, calculation, result with correct unit	25
Certified record with 18 experiments	10
Total	80

For computer experiments, the following scheme shall be followed.

Component	Marks
Writing the programme	30
Execution of the programme	20
Output/Result	20
Certified record with 18 experiments	10
Total	80

PY1141:BASIC MECHANICS & PROPERTIES OF MATTER

(36 HOURS-2 CREDITS)

MECHANICS (22 hrs)

Unit 1- Dynamics of Rigid Bodies (7 hrs)

Equations of motion for rotating rigid bodies- angular momentum and M.I- Theorems on MI.- calculation of MI. of bodies of regular shapes- uniform rod, ring, disc, annular ring, solid cylinder, hollow cylinder and solid sphere- KE of rotating and rolling bodies- torque- Determination of MI. of a fly wheel (theory, experiment and applications).

Unit 2- Conservation of energy (3 hrs)

Energy Conservation law- Work – power- Kinetic Energy – Work Energy theorem- Conservative Forces - potential energy- Conservation of energy for a particle- energy function- .

Unit 3-Oscillations (12 hrs)

Simple harmonic motion – Energy of harmonic oscillators-simple pendulum-mass on a spring-oscillation of two particles connected by a spring- compound bar pendulum - interchange ability of suspension and oscillation-four points collinear with C.G about which the time period is the same-conditions for maximum and minimum periods - Determination of g using symmetric bar pendulum. Mechanical and electromagnetic wave motion- General equation of a wave motion-expression for a plane progressive harmonic wave- energy density for a plane progressive wave.

PROPERTIES OF MATTER (14hrs)

Unit 4- Elasticity (8 hrs)

Modulus of elasticity (revision)Relations connecting the three elastic moduli- Poisson's ratio- bending of beams- bending moment-cantilever-centrally loaded beams and uniformly bent beams-I section girders-torsion of a cylinder-expression for torsional couple -work done in twisting a wire-torsion pendulum-.

Unit 5- Surface Tension (3 hrs)

Surface tension-molecular explanation of ST.-angle of contact(revision)shapes of drops -expression for excess of pressure on a curved liquid surface -variation of ST. with temperature.

Unit 6 – Fluid Dynamics (3 hrs)

Streamline and turbulent flow-equation of continuity-Bernoulli's theorem- venturimeter-viscosity-Newton's law- Stoke's formula.

Books for Study:

1. Mechanics: Hans H. S. and Puri S. P, TMH, 2nd Edn.
2. Mechanics: J.C. Upadhyaya and, Ram Prasad S. Chand Publications, 2017
3. Elements of Properties of Matter: D.S. Mathur, S. Chand Publications, 2008
4. Fundamentals of Physics: Halliday and Resnick, Wiley India Pvt. Ltd., 2006

Books for Reference:

1. Properties of matter: Brijjal and Subramaniam, S.Chand & Co.,2004
2. Principles of Physics: P.V.Naik, PHI,2010

Topics for assignments /discussion in the tutorial session (sample)

1. Physics-The fundamental science-historical development of mechanics-some implications of the principle of mechanics-The scope of mechanics.
2. Life of eminent physicists- Newton, Einstein, C.V.Raman, Edison.
3. Study of Young's modulus for different types of wood.
4. Study of variation of surface tension for different detergents.
5. Study of viscosity of different types of ink and to arrive at knowledge of its fluidity.
6. Wide applications of Bernoulli's equation.
7. Variation of surface tension with temperature by Jaeger's method

PY1241 –HEAT AND THERMODYNAMICS

(36 HRS-2 CREDITS)

Unit 1- Transference of heat (8 hrs)

Thermal conductivity - determination by Lee's Disc method for bad conductor radial flow of heat, cylindrical flow, thermal conductivity of rubber, Weidman-Franz law. Radiation of heat, Stefan's law, determination of Stefan's constant, solar constant, determination of solar temperature

Unit 2- Thermodynamics (18 hrs)

Zeroth Law & First law of Thermodynamics, differential form-Thermodynamic Processes-Expression for work done in isothermal and adiabatic processes. Application of first law to specific heat and latent heat. Reversible and irreversible processes. Second law of thermodynamics- Clausius and Kelvin statements-Carnot engine- Principle of refrigerator- working and efficiency, Otto engine and Diesel engine – working and efficiency.

Unit 3- Entropy (10 hrs.)

Definition of entropy, change of entropy in reversible and irreversible cycle, Clausius inequality and second law of thermodynamics, entropy and available energy, Entropy, probability and disorder. Nernst theorem and third law of thermodynamics. phase transition, phase diagram, first order and second order phase transition (qualitative idea) Clausius-Clepeyron Equation

Books for Study:

1. Thermal and Statistical Mechanics: S.K. Roy, NewAge International
2. Heat and Thermodynamics: D. S. Mathur, S. Chand & Co
3. Heat and Thermodynamics: Brijlal & Subramaniam, S. Chand & Co
4. Thermal Physics, Statistical Physics and Solid State Physics: C. J. Babu, Calicut University Press
5. Engineering Thermodynamics: P. K. Nag, McGraw-Hill, 5th Edn.

Books for Reference:

1. Heat and Thermodynamics: Zemansky, McGraw-Hill
2. Heat and Thermodynamics: Rose C McCarthy, The Rosen Publishing Group, Inc. NY, 2005
3. Thermodynamics, Kinetic Theory and Statistical Thermodynamics: F. W. Sears and G. L. Salinger, Addison-Wesley Publishing Company, 3rd Edn.

PY 1341 ELECTRODYNAMICS

(54 Hours-3Credits).

Unit 1-Electrostatic Field (10hrs)

Electric field: introduction, Coulomb's law, Electric field, continuous distribution (Revision), Divergence and curl of electrostatic fields; Field lines, flux applications of Gauss's law, Curl of E, Electric potential: Introduction to potential, Comments on potential, Poisson's and Laplace's equations, potential of a localized charge distribution, Electrostatic boundary, Work and Energy in Electrostatics: The work done to move a charge, the energy of a point charge distribution, The energy of a continuous charge distribution.

Unit 2-Electrostatic fields in matter (10 hrs)

Polarization: Dielectrics, induced dipoles, Polarization, The field of a polarized object: Bound charges, physical interpretation of bound charges and the field inside a dielectric. Electric displacement: Gauss's law in the presence of dielectrics,

Boundary conditions.

Unit 3-Magnetostatics (7hrs)

IntroductionThe Biot- Savart law,Ampere's force law (revision), Magnetic torque, Magnetic flux and gauss's law for magnetic fields, magnetic vector potential, Magnetic intensity and Ampere's circuital law, magnetic materials.

Unit 4-Electromagnetic Induction (7hrs)

Electromotive force: Ohm's law Electromagnetic Induction Faraday's law, the induced electric field, Maxwell's equations, Magnetic charge,

Unit 5-Electromagnetic waves (6hrs)

Waves in one dimension: The wave equation Electromagnetic waves in vacuum: The wave equation for E and B, Monochromatic plane waves, Energy and momentum in electromagnetic waves.

Unit 6-Transient currents(7hrs)

Growth and decay of current in LR and CR Circuits-Measurement of high resistance by leakage-Charging and discharging of a capacitor through LCR circuit.

Unit 7-Alternating current (7 hrs)

AC through series LCR (acceptor circuit) and parallel LCR circuit (rejecter circuit)- Q- factor, Power in AC-power factor.

Books for Study:

1. Electrodynamics: David J Griffith, PHI, 3rdEdn.
2. Electricity and Magnetism: Murugesan, S.Chand & Co.
3. Electricity and Magnetism: K.K.Tiwari, S.Chand & Co.
4. Principles of electromagnetics: Matthew N.O. Sadiku and S. V. Kulkarni, Oxford University Press, 6thEdn.

Books for Reference:

1. Electricity and Magnetism: Muneer H. Nayfeh & Norton K. Bressel, John Wiley & Sons
2. Electricity and Magnetism: E.M. Purcell, Berkley Physics course, Vol.2, MGH
3. Electricity and Magnetism: J.H. Fewkes & John Yarwood, University Tutorial Press
4. Classical Electrodynamics: Walter Greiner, Springer International Edn.
5. Electromagnetic waves and radiating systems: Jordan & Balmain, PHI
6. Electromagnetics: B.B.Laud, Wiley Eastern Ltd., 2ndEdn.
7. Introduction to electrodynamics: Reitz&Milford Addison Wesley

8. Electromagnetic theory fundamentals: Bhag Guru and Huseyin Hizirogulu, Cambridge University Press, 2ndEdn.

9. Electricity and Magnetism: D.C.Tayal, Himalaya Publishing Co.

Topics for discussion in Tutorial session/Assignments (sample)

1. Comment on how electrostatic energy is stored in a field
2. Discuss the electrostatic properties of conductors
3. What is meant by electrostatic shielding? In what way it helps us?
4. Discuss the peculiarities of electric displacement D and electric field E . How they are incorporated in Maxwell's Equations
5. Discuss the properties of linear dielectrics. What differentiates adielectric to be linear or not?
6. Discuss applications of Ampere's circuital law
7. Compare electrostatics and magnetostatics
8. Why magnetic forces cannot do work
9. Discuss about cyclotron motion & cycloid motion
10. Discuss whether there exists any stand-off between ohm's law and Newton's second law
11. A battery has an emf . Can this emf be a 'force'? How will you interpret electromotive force?
12. Discuss the role of motional emf in power generation
13. Discuss the orthogonality of E , B and propagation vector k
14. A wave function can have a sinusoidal representation. Solve the wave equation for this function and discuss the various terms related to a wave such as amplitude, frequency, phase, wave number.
15. Complex representation of wave function has good advantage. Why? Discuss the linearity of wave function. (use complex notation)

16. Discuss AC through LC, LR and CR circuits
17. Show that sharpness of resonance is equal to Q-factor
18. What is a choke coil? Discuss the advantage of using a choke coil instead of a resistor

PY1441 CLASSICAL AND RELATIVISTIC MECHANICS
(54 Hours-3Credits).

Unit 1 - Particle Dynamics (5 hrs)

Mechanics of a particle – equation of motion of a particle – Motion of a charged particle in electromagnetic field – mechanics of a system of particles.

Unit 2-Conservation laws (6 hrs)

linear uniformities of space and conservation of linear momentum – rotational invariance of space and law of conservation of angular momentum – homogeneity of flow of time and conservation of energy.

Unit 3- Motion in central force field (10 hrs)

Equivalent one body problem – motion in central force field – general features of motion – motion in an inverse square law force field – equation of the orbit – Kepler's laws of planetary motion and their deduction.

Unit 4 - Collisions (6 hrs)

Conservation laws- Conservation of momentum- laboratory and centre of mass systems- kinetic energies in the lab and CM systems-Cross-section of elastic scattering

Unit 5. Lagrangian Dynamics(9hrs)

Constraints-generalized coordinates- principle of virtual work-D'Alembert's principle, Lagrange's equation from D'Alembert's principle-applications of Lagrange's equation in simple pendulum, Atwood's machine and compound pendulum, Comparison of Lagrangian approach with Newtonian approach.

Unit 6. Hamiltonian Dynamics(5hrs)

Generalized momentum and cyclic coordinates- Hamiltonian function H- conservation of energy- Hamilton's equation - examples of Hamiltonian dynamics-one dimensional harmonic oscillator

Unit 7. Frames of Reference, Galilean transformation and Special theory of relativity(13hrs)

Inertial frames of reference- Galilean transformation- non- inertial frames

Origin and significance of special theory of relativity-search for universal frame of reference-Michelson-Morley experiment- postulates of special theory of relativity- consequences-Lorentz transformation equations- kinematical consequences of Lorentz transformations-length contraction-time dilation-twin paradox-transformation of velocity- variation of mass with velocity- mass energy equivalence

Books for Study:

1. Classical Mechanics: J. C. Upadhyaya, Himalaya Publishing
2. Mechanics: H.S.Hans and S.P.Puri, Tata-McGraw Hill
3. Classical Mechanics: G. Aruldas, PHI Learning Pvt Ltd., 2008
4. Introduction to classical mechanics: R.G.Thakwale and P.S.Puranik, Tata-McGraw Hill.
5. Classical Mechanics: Vimal Kumar Jain, ,Ane Books Pvt. Ltd., 2009

Books for Reference:

1. Classical Mechanics: Goldstein.
2. Modern Physics:Ronald Gautreau, Schaum's outlines series,1999
3. Classical Mechanics-Systems of Particles & Hamiltonian Dynamics:Walter Greiner, Springer,2ndEdn.
4. Classical Mechanics: N.C Rana and P.S.Joag, TMH Education Pvt. Ltd., 2015

PY1541- QUANTUM MECHANICS

(72 HRS-4 CREDITS)

Unit 1 – The Emergence of Quantum Mechanics (18 hrs)

Limitations of classical physics, Black body radiation curve-Optical spectra — photoelectric effect -specific heat of solids -Plank's quantum hypothesis, Einstein's theory of photoelectric effect -Compton effect- Quantum theory of specific heat of solids, -Bohr model- hydrogen atom- Bohr postulates-The correspondence principle.

Unit 2-Wave Mechanics (22 hrs)

Wave nature of particles-electron diffraction- standing wave of electron in the orbit uncertainty principle -uncertainty relation among canonically conjugate pairs-application- non-existence of electrons in the nucleus-ground state energy of hydrogen atom- width of spectral lines-Properties of wave function-Conditions for Physical Acceptability of Wave Function, Normalization and orthogonality condition. Superposition Principle-wave packets, relation between - Particle velocity- group velocity and phase velocity- Probability Interpretation of Wave Function -Statistical Interpretation of Wave function -probability current density in one dimension-Expectation value- Time dependent Schrodinger equation,-Time independent Schrodinger equation - stationary states.

Unit 3-One Dimensional Energy Eigen Value Problems (14hrs)

Free particle Schrodinger equation—square-well potential with infinite walls-Square well potential with finite walls, square potential barrier- The Harmonic oscillator- (Schrodinger method)-

Unit 4- General Formalism of Quantum Mechanics (18hrs)

Linear vector space, Linear operator, Eigen values and Eigen functions-, Hermitian operator, Postulates of Quantum Mechanics-Equation of motion-Schrodinger representation- Momentum representation

Books for Study:

1. Quantum Mechanics: G. Aruldas, PHI, 2ndEdn., 2002
2. A Text book of Quantum Mechanics: P.M. Mathews & K. Venkatesan- McGraw Hill, 2ndEdn., 2010
3. Quantum Mechanics: Robert Eisberg and Robert Resnick, Wiley, 2nd Edn. 2002
4. Quantum Mechanics: Leonard I. Schiff, TMH, 3rd Edn., 2010
5. Concepts of Modern Physics: Arthur Beiser, TMH, 6th Edn.

Books for Reference:

1. Quantum Mechanics:Eugen Merzbacher, John Wiley and Sons Inc.,2004
2. Introduction to Quantum Mechanics: David J. Griffith, Pearson Education, 2nd Ed. 2005
3. Quantum Mechanics: Walter Greiner, Springer,4thEdn., 2001
4. Quantum Mechanics: Bruce Cameron Reed, Jones and Bartlett, 2008.
5. Quantum Mechanics for Scientists & Engineers: D.A. B. Miller, Cambridge University Press, 2008
6. Schaum's outline series

**PY1542: STATISTICAL PHYSICS, RESEARCH METHODOLOGY AND
DISASTER MANAGEMENT
(72 HRS- 4 CREDITS)**

Unit 1- Statistical Physics (18 hrs)

Statistical probability, Macro and Micro states, Phase space, Statistical ensemble, Postulate of equal probability, Maxwell Boltzmann distribution, Velocity distribution. Indistinguishability of identical particles, Bose Einstein and Fermi Dirac distribution function, comparison of three statistics

Unit 2 Research Methodology (18 hrs)

Research - Objectives and motivation in research – different types of research- research approaches- Significance of research- Research methods and

methodology – Research and scientific method- Various steps in a research process-importance of literature survey- criteria of good research.

Thesis/ Report writing - preliminary section (Title page, declaration of author, certificate of supervisor, table of contents, list of tables and figures, preface acknowledgement), Main Text (abstract, introduction, experimental section, results and discussion), Conclusions, references, scope for future study.

Unit 3 Error Analysis (12 hrs)

Significant figures- Basic ideas of error measurement, uncertainties of measurement, importance of estimating errors, dominant errors, random errors, systematic errors, rejection of spurious measurements.

Estimating and reporting of errors, errors with reading scales, absolute and relative errors, and standard deviation, Variance in measurements, error bars and graphical representation.

Unit 4 – Disaster Management (24hrs)

Global natural disasters: Natural hazards and natural disasters, Recent major disasters and their relief efforts, Impact of global climate change and major natural disasters, Human adaptability of natural disasters, Fragile natural eco-environment, Disaster reduction activity, achievements, challenges and future development Earth quake disaster and their and their effects, Advancement in research of earthquake disaster, earthquake and tsunami warnings, earthquake disaster prevention, earthquake disaster mitigation

Health emergencies and diseases: environmental health and diseases, disasters and emergencies, steps in disaster management, pre-disaster activity, role of water supply, need for protecting large scale water supply schemes, assessment of damaged and available and water resources, water quality testing- Personal hygiene, control of communicable diseases and prevention of epidemics, measures for controlling communicable diseases and epidemics.

Radiation emergencies, health consequence of radiation, measures to prevent sudden health emergencies due to radiation

Books for Study:

1. Thermal and Statistical Mechanics: S.K. Roy –New Age International-2001
2. Elements of Statistical Mechanics: Kamal Singh and S. P. Singh- S. Chand & Co,1999
3. Thermal Physics, Statistical Physics and Solid State Physics: C. J. Babu, Calicut University Press
4. Introduction to Statistical Mechanics: S. K. Sinha, Alpha Science International Ltd. 2005
5. Statistical Mechanics: B. K. Agarwal- New Age International 2007
6. Research Methodology: C. R. Kothari, New Age International

Publishers.

7. Natural disaster mitigation – a scientific and practical approach: Science Press, Beijing, 2009
8. Environmental health in emergencies and disasters: A practical guide, B.Wisner & J.Adams (Eds.), WHO, Geneva, 2002 ISBN 92-4 154541-0.
9. Introduction to Disaster Management: SatishModh, Macmillan, 2010

Books for Reference:

1. Statistical Mechanics: S. Rajagopal
2. Introduction to Statistical Physics: Kerson Huang -CRC Press, 2001
3. Statistical Mechanics: Norman Davison, Courier Corporation, 2013
4. Disaster Management: Harsh K Gupta, Universities Press, 2003

**PY1543-ELECTRONICS
(72 HOURS-4 CREDITS)**

Unit 1. Circuit Theory (4 hours)

Kirchhoff's law- Ideal voltage and current sources- Thevenin's and Norton's theorem, Maximum power transfer theorem

Unit 2. Diode Circuits(14 hours)

Extrinsic semiconductors-n- type and – p-type semiconductors-PN junction-PN junction under forward and reverse biased conditions- r_m s value and peak inverse voltage- diode characteristics-ac and dc resistances- half wave and full wave rectifiers- (average dc value of current, ripple factor and efficiency)- different types of filters(shunt capacitor, LC and RC)- break down mechanism in diodes- Zener diode- voltage regulator-

Unit 3. Transistors(16 hours)

Theory of BJT operation- CB,CE and CC characteristics-alpha , beta and gamma – relation between transistor currents- biasing circuits(CE configuration)- stability factors-selection of operating point-ac and dc load lines-Q point-collector feedback; base resistor and potential divider methods- BJT amplifiers- input and output impedances-graphical analysis of CE amplifier(frequency response,band width and gain in dB)- emitter follower.

Unit 4. Power amplifiers: (5 hours)

Amplifier classes and efficiency - class A operation - transformer coupled class A amplifier - class B amplifier - push pull amplifier - basic ideas of class C operation - distortion in amplifiers.

Unit 5. Feedback & Oscillator circuits (8 hours)

Feedback principles – negative feedback - advantages of negative feedback - positive feedback - principle of sinusoidal feedback- oscillation - Barkhausen criterion for oscillations - RC phase shift, Hartley Oscillator, Colpitt's, Oscillator (derivations not required).

Unit 6. Modulation (5 hours)

Fundamentals of modulation - AM, FM - frequency spectrum of AM - power in AM - demodulation of AM signal - frequency spectrum for FM

Unit 7. Special devices: (8 hours)

JFET- Basic construction - Theory of operation - Static characteristics - Drain characteristics- Advantages - MOSFET – Depletion enhancement MOSFET – Construction – Static characteristics. Uni-junction Transistor - Construction-operation.

Unit 8. Operational amplifiers (IC741)(12 hours)

Introduction – Schematic symbol and pin configuration - circuit configuration and block diagram representation – differential amplifier-ideal OP amp. - CMRR – differential mode and common mode – virtual ground principle – parameters of OP amp. - inverting amplifier – non-inverting amplifier –summing- differentiator-integrator amplifiers.

Books for Study:

1. Basic electronics: Devices, circuits and IT fundamentals: Santiram Kal, PHI, 2009
2. Basic Electronics-Solid State: B. L. Theraja, S. Chand Ltd., 2005
3. Principles of Electronics: V. K. Mehta, S. Chand Ltd.,2005
4. A first course in Electronics: Anwar A. Khan, Kanchan K. Dey, PHI, 2006
5. Communication Electronics:Jose Robin and Ubald Raj, Indira Publications, 2002

Books for Reference:

5. Electronic Devices and Circuits: Theodore F. Bogart Jr., Universal book stall
6. Electronic devices and Circuit theory: Robert Boylestad & Louis Nashelski, PHI, 5th Edn.
7. Electronic fundamentals & applications: John D Ryder, PHI, 4thEdn.
8. Electronic Communications: Dennis Roddy, John Coolen, Pearson, 4thEdn.

Topics for assignments/discussion in the tutorial session (sample)

1. Electronic projects using flip flops.
2. Electronic projects using logic gates.
3. Electronic projects using IC 741 OP amp.
4. Electronic projects using timer 555.

5. Electronic projects using IC 311.
6. Constant voltage power supplies.
7. Constant current sources.
8. Oscillators of different frequencies.
9. Low range frequency generators.
10. High range frequency generators.
11. Voltage regulated dc power supplies with variable output.
12. Voltage regulated dual power supplies with variable output.
13. Instrument for the measurement of capacitance.
14. Instrument for the measurement of dielectric constant of a liquid/ solid.
15. Effect of temperature on electronic components.

PY1544-ATOMIC & MOLECULAR PHYSICS

(72 HOURS-4 CREDITS)

Unit 1- Vector Atom Model (10hrs)

Bohr's theory, correspondence principle Somerfield's atom model and explanation of fine structure of H line in Balmer series of hydrogen atom. Limitation of Sommerfeld atom model. Vector atom model - Various quantum numbers associated with vector atom model - L.S and j.j couplings - application of spatial quantization - Pauli's exclusion principle - magnetic dipole moment of electron due to orbital and spin motion - Spin-Orbit coupling.

Unit 2- Atomic Spectra (14hrs)

Optical spectra - Spectral terms and notations - selection rules - intensity rule and interval rule - fine structure of sodium D lines - hyperfine structure - alkali spectra - Zeeman effect - Larmor's theorem - quantum mechanical explanation of normal Zeeman effect. Anomalous Zeeman effect - Paschen-Back effect - Stark effect.

Unit 3- X-ray Diffraction (8 hrs)

X-rays - Discovery - properties - scattering - Measurement of X-ray wavelengths by ruled gratings - X-ray Spectra - continuous and characteristics X-ray spectrum - Origin of continuous Spectrum - Origin of characteristic X-rays - X-ray energy level diagram. - Absorption of X-rays - Applications of X-rays

Unit 4- Molecular spectra (28 hrs)

Electromagnetic spectra - molecular energies - classification of molecules - rotational spectra of diatomic molecules - rotational energy levels - selection rules - rotational spectrum - isotope effect - bond length and atomic mass.

Diatomc vibrational spectra-vibrational energy levels-selection rule-vibrational transitions-Rotation-Vibration transitions-IR spectrometer

Raman scattering- classical description of Raman scattering, quantum theory of Raman scattering- -vibrational Raman spectra-diatomc molecules-polyatomic molecules-rotational Raman spectra Raman spectrometer.

Electronic spectra sequences and progressions-Frank-Condon principle-

Unit 5- Resonance Spectroscopy (12 hrs)

NMR principle-Resonance condition-NMR spectrometer-chemical shift-indirect spin-spinInteraction- applications of NMR spectroscopy-

ESR principle- Resonance condition -ESR spectrometer-hyperfineinteraction – applications of ESR spectroscopy.

Mossbauerspectroscopy- principle -isomer shift.

Books for Study:

1. Modern Physics: G.Aruldas and P.Rajagopal, PHI, New Delhi, 2005
2. Modern Physics: R.Murugesan, S.Chand & Co., Reprint, 2008
3. Atomic and Nuclear Physics: N.Subramaniam&Brijlal, S.Chand & Co.
4. Atomic Physics: J.B.Rajam, S.Chand & Co.
5. Concepts of Modern Physics: A. Beiser, TMH, New Delhi, 6thEdn.

Books for Reference:

1. Fundamentals of Molecular Spectroscopy: Banwell, TMH
2. Spectroscopy: Walker & Straw, Chapman & Hill.
3. Molecular Spectroscopy: G.Aruldas, PHI, 2004
4. Atomic and Nuclear Physics: Dr.V.W.Kulkarni-Himalaya Publishing House

PY 1551-OPEN COURSES (54 HOURS-2CREDITS) FOR EACH COURSE

PY1551.1. BIO PHYSICS (54 HOURS)

Unit 1 (18 hrs)

Bio mechanics- biophysics and fluid flow—Gas transport—physics of audition Physics of vision (chapter 1 to 5 of Reference 3)

Unit 2 Cellular – Molecular biophysics (18 hrs)

Cell -components-proteins-nucleic acids—physics of bio-membranes -Thermodynamics of bio systems (Chapter 6 to 9 of reference 3)

Unit 3 (18 hrs)

Radiation biophysics

Bio –electronics and Bio Instrumentation (chapter 17 of reference 1) Bio – informatics - (chapter 6 of reference 1) Demonstration of biophysics experiments (reference 3)

Books for Study

1. Essentials of Biophysics: P. Narayanan, 2nd Edn. New Age publishers
2. A text book of biophysics: R.N.Roy, New central book agency Kolkata.
3. Elementary bio physics, P.K.Srivastava, Narosa publishing house ,New Delhi
4. Introduction to Biophysics ,Pranab kumar banerjee, S.Chand & co ,New Delhi
5. Biological science ,Green,Stout,& Taylor, Cambridge university press

Reference

PY 1551.2 ASTRONOMY AND ASTROPHYSICS

(54 Hours)

Unit 1: Introduction to Astronomy (10 hours)

What is Astronomy – Branches of Astronomy - The celestial sphere and stellar magnitudes: constellations, stellar magnitudes, apparent magnitudes – The celestial coordinate system – Precession of Earth's axis.

Unit 2: History of Modern Astronomy (14 hours)

Ptolemy's model of Universe – Copernican and Galilean contributions – Laws of planetary motion: Tycho Brahe's observations, Kepler's laws – Newton and his law of Universal law of Gravity – Einstein's special and general theories of relativity (*topics in this unit are intended as brief qualitative introductions only*)

Unit 3: The Solar system (15 hours)

Formation of solar system: Nebular hypothesis – The Sun: Physical properties – Internal structure – Solar atmosphere - Sun spots – Solar wind, prominences and flares – Physical characteristics of planets in solar system – Earth's motion and Seasons - Lunar and Solar eclipses – Brief familiarisation of solar system objects: Satellites, Asteroid belt, Kuiper belt, Comets and Meteorites.

Unit 5: Outer Universe (15 hours)

Properties of stars: luminosity, colour and surface temperature – Spectral types of stars – Hertzsprung-Russel diagram – Evolution of a Sun-like star – Fate of high-mass stars: Supernova, Neutron stars and Black holes (*qualitative description only*) – Brief familiarization of Milky Way galaxy, Types of galaxies according to shape.

Sources for Study:

1. <https://www.space.com/16014-astronomy.html>
2. Introduction to Astronomy and Cosmology – Ian Morison (Wiley)
3. <https://theplanets.org/solar-system/>

Additional Reference:

1. Planet Earth, Cesare Emiliani, (Cambridge University Press)
2. Astrophysics - K. D. Abhayankar (University Press)
3. Introduction to Astrophysics – Baidyanadh Basu

PY 1551.3- APPLIED PHYSICS(54HOURS)

UNIT-1.ELECTRIC AND ELECTRONIC EQUIPMENTS (14 hrs)

Electric motor-principles of working, Microwave oven-principle-technical specifications-applications-advantages, public address system-Block diagram representation- function of each unit-CD player and drives-DVD player and drives- Telephonic communication(Cable and cellular)-principles (qualitative study using block diagram) -Cell phone-SIM card-technical specifications-Radio –History of radio revolution-different types of radios-Television-working(qualitative)-Touch screens & ATM (Automatic Telling machine)

UNIT-2- X-RAY AND ITS APPLICATIONS (11 hrs)

Discovery of X-rays, Gas filled tube, Coolidge X-ray tube, Properties of X-ray, X-ray spectra-continues and characteristic spectra, C T Scan-basic principle- applications and advantages –MRI Scan-Principle, applications and advantages.

UNIT-3- LASERS (13 hrs)

Introduction-Interaction of light with matter, Absorption, spontaneous emission, stimulated emission, Light amplification, population inversion, metastable states- Components of Laser-Principal pumping Schemes-Role of resonant cavity- Ruby laser, He-Ne Laser-Applications.

UNIT-4- HOLOGRAPHY(6 hrs)

Introduction, principle of holography, Recording of the hologram, Reconstruction of the image-applications.

UNIT-5-FIBRE OPTIC COMMUNICATION (10 hrs)

Introduction, optical fibre, Necessity of cladding, optical fibre system, Total internal reflection, propagation of light through an optical fibre, critical angle of propagation , Modes of propagation- Types of rays-classification of optical fibres- Applications

References

1. Audio and Video Systems. R.G.Gupta, Technical Education Series.
2. Mobile Satellite Communication Network (ch 1 &2),Ray E Sherrif &Y. Funntu,Wiley India Edu.
3. Television Engineering & Video System, R.g.Gupta,TMH.
4. Electrical Technology (Vol 1& 2),B.L.Theraja
5. A Text book of Optics by DR. N. Subrahmanyam Brijlal,Dr MN Avadhanulu-S.Chand & Company Pvt Ltd
6. Modern Physics by R.Murugesan & Kiruthiga Siva Prasath
S.Chand & Company Pvt Ltd
7. Atomic and Nuclear Physics By Dr.V.W.Kulkarni-Himalaya Publishing House

PY1551.4. ENVIRONMENTAL PHYSICS (54 HOURS)

Unit 1 Essentials of Environmental physics (18 hrs)

Structure and thermodynamics of the atmosphere; composition of air; Greenhouse effect; Transport of matter; energy and momentum in nature; Stratification and stability of the atmosphere; Laws of motion; Hydrostatic equilibrium; General circulation of the tropics; Elements of weather and climate in India.

Unit 2 Environmental pollution and Degradation(18 hrs)

Factors governing air, water and noise pollution; Air and water quality standards;Waste disposal; Heat island effect; Land and sea breeze; Puffs and Plumes; Gaseous and particulate matter; Wet and dry deposition; Dispersal mechanism of air and water pollutants; Mixing height and turbulence; Gaussian plume models; Dispersion models; Environmental degradation; Thermal and radioactive pollution; Nuclear radiation; Health hazards and safety.

Unit 3 Environmental Changes and remote sensing (18 hrs)

Energy sources and combustion processes; Renewable sources of energy; Solar energy, Wind energy, Bio energy, hydro power; fuel cells; and nuclear energy;Forestry and bio-energy; Deforestation; Degradation of soils; Agriculture and land use changes; Changing composition of local and global environment; Remote sensing techniques.

Books for Study:

1. The Physics of Monsoon:R.N.Kesavamoorthy and N. Sankar Rao, Allied Publications
2. The Physics of Atmosphere: J.T.Houghton, Cambridge University
3. Renewal Energy Resources: J.T Widell and J Weir, ELBS 1988
4. Numerical Weather Prediction: G.J.Haltiner and R.T.Williams, John Wiley

PY1551.5. ENERGY PHYSICS
(54 HOURS)

Unit I (7 hrs)

Various forms of energy – renewable and conventional energy systems – comparison – coal, oil and natural gas – availability – applications – merits and demerits.

Unit 2 (10 hrs)

Solar energy - Solar radiation measurements, solar energy collector, principle of the conversion of solar radiation in to heat, Solar energy storage, solar heaters, space cooling, solar ponds, solar cookers, solar distillation, solar furnaces, solar green houses, merits and demerits of solar energy.

Unit 3 (9 hrs)

Wind energy: Basic principle of wind energy conversion, basic components of wind energy conversion system (WECS), wind energy collectors. application of wind energy.

Unit 4 (9 hrs)

Biomass energy, classification, photosynthesis, biomass conversion process, Gober gas plants, wood gasification, ethanol from wood, merits and demerits of biomass as energy source

Unit 5 (9 hrs)

Energy from Oceans and Chemical energy resources: Ocean thermal energy Conversion, energy from waves and tides – basic ideas, nature, applications, merits and demerits.

Unit 6 (10 hrs)

Patterns of energy consumption in domestic, industrial, transportation and agricultural sectors –energy crisis and possible solutions – energy options for the developing countries – energy storage-primary and secondary cells – fuel cells (basics) – impact due to non-conventional energy sources – global warming.

Books for Study:

1. Non – Conventional Energy Resources: G. D. Rai, Khanna Publishers,2008.
2. Solar energy: G.D. Rai, 5th edition, 1995.
3. Solar Energy Fundamentals and application: H.P. Garg and J. Prakash, Tata McGraw - Hill Publishing company Ltd., 1997.

Books for Reference:

1. Energy Technology: S. Rao and Dr. B.B. Parulekar, 1997, 2ndEdn.
2. Power Plant Technology: A. K. Wahil. 1993.
3. Solar energy: S. P. Sukhatme, Tata McGraw- Hill Publishing company Ltd.,1997.

PY 1641SOLID STATE PHYSICS (72 HOURS -4 CREDITS)

Unit 1Crystal Structure(18hrs)

Solids: Amorphous and Crystalline Materials. Lattice Translation Vectors.Lattice with a Basis – Unit Cell-Elements of symmetry-Types of Lattices -two and three dimensional- Miller Indices-Reciprocal Lattice.-.Brillouin Zones.Diffracton of X-rays by Crystals.Bragg's Law.X- ray diffraction techniques-Inter atomic forces. Types of bonding

Unit 2 Conduction in Metals- Free electron model (12 hrs) Introduction-conduction electrons-free electron gas-electrical conductivity-electrical resistivity versus temperature-heat capacity of conduction electrons -Fermi surface -electrical conductivity-effects of the Fermi surface-thermal conductivity in metals-Hall effect and magneto resistance -A.C conductivity and optical properties-failure of free electron model. -The Kronig -Penney model- conductors, semiconductors and insulators.

Unit 3 Band theory(10 hrs)

Bloch theorem- Kronig Penny model-Band Gaps- Conductors-Semiconductors and insulators- P and N type Semiconductors- Conductivity of Semiconductors- mobility- Hall Effect- Hall coefficient.

Unit 4 Dielectric Properties of Materials (12 hrs)

Polarization- Local Electric Field at an Atom- Depolarization Field- Electric Susceptibility- Polarizability- Clausius Mosotti Equation- Classical Theory of Electric Polarizability- Normal and Anomalous Dispersion- Cauchy and Sellmeir relations- Langevin-Debye equation- Complex Dielectric Constant- Optical Phenomena- Application: Plasma Oscillations- Plasma Frequency- Plasmons

Unit 5Magnetic Properties of Matter(12hrs) Dia, Para, Ferri and Ferromagnetic Materials. Classical Langevin Theory of Dia and Paramagnetic Domains. Quantum Mechanical Treatment of Para magnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains. Discussion of B-H Curve. Hysteresis and Energy Loss

Unit 6 Superconductivity(8 hrs)

Critical Temperature-Critical magnetic field-Meissner effect- Type I and type II Superconductors- London's Equation and Penetration Depth- Isotope effect-.BCS theory- Tunnelling and Josephson effect(Qualitative study)

Books for Study:

1. Elements of Solid State Physics: J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India
2. Elementary Solid State Physics: 1/e M. Ali Omar, Pearson India, 1999
3. Solid State Physics: M.A. Wahab, Narosa Publication, 2011
4. Elements of Solid State Physics: J.P. Srivastava, 2nd Edn., Prentice-Hall of India, 2006

Books for Reference:

1. Introduction to Solid State Physics: Charles Kittel, 8th Edn., Wiley India Pvt. Ltd., 2004
2. Introduction to Solids: Leonid V. Azaroff, Tata Mc-Graw Hill, 2004
3. Solid State Physics: Neil W. Ashcroft and N. David Mermin, Cengage Learning, 1976
4. Solid State Physics: Rita John, McGraw Hill, 2014
5. Solid-state Physics: H. Ibach and H Luth, Springer, 2009

PY 1642 NUCLEAR AND PARTICLE PHYSICS (72 HOURS-4 CREDITS)

Unit 1. General Properties of Nuclei(14hrs)

Constituents of nucleus and their Intrinsic properties-quantitative facts about size-mass- charge density (matter energy), binding energy- average binding energy and its variation with mass number- main features of binding energy versus mass number curve- nuclear stability- angular momentum- parity- magnetic moment- electric quadrupole moments- Nuclear forces-meson theory.

Unit 2. Nuclear Models(11 hrs)

Liquid drop model -semi empirical mass formula and significance of various terms, condition of nuclear stability. Shell model-evidence for nuclear shell structure, nuclear magic numbers, basic assumptions of shell model, Collective model.

Unit 3. Radioactivity:(12 hrs)

Alpha decay-basics of α -decay processes, theory of α -emission, Gamow's theory, Geiger Nuttall law, β -decay- energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis, Gamma decay: Gamma ray emission & kinematics, internal conversion.

Unit 4.Nuclear Reactions (9 hrs)

Types of Reactions, Conservation Laws, kinematics of reactions, Q-value- reaction rate- reaction cross section- reaction mechanism-Concept of compound nucleus.

Unit 5. Particle Detectors & Accelerators (6 hrs)

GM counter-scintillation counter- Linear accelerator- Cyclotron- Synchrotron- betatron.

Unit 6 – Nuclear fission and fusion (12 hrs)

Nuclear fission-energy released in fission-Bohr and Wheeler's theory-chain reaction -multiplication factor-critical size-atom bomb-nuclear reactors-breeder reactors-uses of nuclear reactors. Nuclear fusion-sources of stellar energy- thermonuclear reactions-hydrogen bomb-controlled thermo-nuclear reactions- magnetic bottle-Tokamak- inertial confinement-nuclear power in India.

Unit 7.Particle physics: (8 hrs)

Particle interactions- basic features- types of particles and its families-Symmetries and Conservation Laws-baryon number- Lepton number- Isospin- Strangeness and charm- concept of quark model- Cerenkov radiation.

Books for Study

1. Modern Physics: R. Murugesan, S. Chand & Co., Reprint,2008
2. Modern Physics: G. Aruldas and P. Rajagopal, PHI, New Delhi, 2005.
3. Nuclear Physics: D. C. Tayal, Himalaya Publishing House, 4thEdn.
4. Concepts of Modern Physics: A. Beiser, Tata McGraw-Hill, New Delhi, 6thEdn.
5. Atomic and Nuclear Physics:N. Subramaniam and Brijlal, S.Chand & Co.
6. Atomic Physics: J.B.Rajam, S.Chand & Co.

7. Introduction to Elementary Particles: D. Griffith, John Wiley & Sons
8. Nuclear Physics: S.N.Ghoshal, S.Chand & Co.

Books for Reference:

1. Concepts of nuclear physics: Bernard L. Cohen, Tata Mcgraw Hill, 1998
2. Nuclear Physics: Kaplan, Narosa publications
3. Introductory nuclear Physics: Kenneth S. Krane, Wiley India Pvt. Ltd., 2008
4. Introduction to the physics of nuclei & particles: R.A. Dunlap, Thomson Asia, 2004
5. Quarks and Leptons: F. Halzen and A.D. Martin, Wiley India, New Delhi
6. Basic ideas and concepts in Nuclear Physics An Introductory Approach: K. Heyde, Institute of Physics Publishing, 2004
7. Radiation detection and measurement: G.F. Knoll, John Wiley & Sons, 2000
9. Theoretical Nuclear Physics: J.M. Blatt & V.F. Weisskopf, Dover Pub.Inc., 1991

**PY1643- CLASSICAL AND MODERN OPTICS
(72 HRS-4 CREDITS)**

Unit 1. Interference of light (12 hrs)

The principle of superposition - coherent sources – Double slit interference (theory of interference fringes and band width) - Interference by division of wave front and amplitude –Fresnel’s biprism-interference in thin films-classification of fringes-wedge shaped films-testing of optical flatness-Newton’s rings(reflected system)-refractive index of a liquid-Michelson interferometer – determination of wavelength

Unit 2. Diffraction (14 hrs)

Fresnel diffraction: - Half-period zones - explanation of rectilinear propagation of light– diffraction at a straight edge-zone plate. Fraunhofer diffraction: - Diffraction at a single slit, double slits – plane transmission grating - Rayleigh’s criterion for resolution

-
resolving power of diffraction grating.

Unit 3. Dispersion (5 hrs)

Unit 4. Polarisation (12 hrs)

Plane polarized light -polarization by reflection – Brewster's law - pile of plates -
Malus law - Double refraction - Huygens explanation for double refraction in uniaxial crystals - Nicol prism - Nicol prism as a polarizer and analyzer – Theory-production and analysis of plane, circularly and elliptically polarized light - quarter and half wave plates.

Unit 4. Laser (14 hrs)

Basic principle of laser operation Einstein coefficient, light propagation through medium and condition for light amplification population inversion by pumping and cavity threshold condition, line shape function- optical resonators (qualitative) Q factor various laser systems –Ruby laser - He-NE laser, Dye laser, semiconductor laser, (working principle only) Application of lasers- characteristics of laser beams -spatial coherence - Temporal coherence and spectral energy density Nonlinear optics : Nonlinear Polarization –second harmonic generation – phase matching

Unit 5. Fibre Optics (8 hrs)

Introduction, optical fibre, the numerical aperture, coherent bundle, pulse dispersion in step index fibre, graded index fibre, single mode fibre, multimode fibre, Fibre optic sensors (qualitative), fibre optic communication (qualitative), Advantages of fibre optic communication system.

Unit 6. Holography: (7 hrs)

Principle of holography, recording of holograms, reconstruction of images (Theory not needed), application of holography, different types of holograms, transmission and reflection types.

Books for Study:

- 1 Text Book of Optics: Subramaniam & Brijlal, .Avadhanulu, 23rd edition,2006
- 2 Optics: Ajoy Ghatak, TMH, 2005
- 3 Optics and spectroscopy: R.Murugesan and K Sivaprasad, S. Chand & Co., 2010
- 4 Lasers Principles, Types and applications: K.R.Nambiar, New Age International Pvt. Ltd. 2006
- 5 Optics: Eugene Hecht, Addison-Wesley 2002

Books for Reference:

1. Fundamentals of Optics: Jenkins and White, MCH
2. Modern Classical Optics: Geoffrey Brooker, Oxford University Press, 2003
3. Fundamentals of Optics-Geometrical Physical and Quantum: D. R. Khanna and H. R. Gulati, R. Chand, 1984
4. Lasers & Non-Linear Optics: B. B. Laud, New Age International Pvt. Ltd., 2011
5. Electronic Communications: Dennis Roddy & John Coolen, Pearson, 1995

Topics for assignments/discussion in the tutorial session (sample)

1. Michelson's interferometer-Standardization of metre.
2. Diffraction at a rectangular aperture and circular aperture
3. Optical activity-Fresnel's theory of optical rotation.
4. Resolving power of prism and telescope
5. Constant deviation spectrometer.
6. Laurent's half shade polarimeter.
8. Laser applications.
9. Study of Fraunhofer lines using spectrometer.
10. Determination of refractive index of liquid by Newton's rings method.
11. Comparison of radii of curvature by Newton's rings method.

PY1644-DIGITAL ELECTRONICS AND COMPUTER SCIENCE**(72HRS-4 CREDITS)****Unit-1 (22hrs)**

Number systems :-Decimal number system-binary number system-conversion 2of binary number to decimal and decimal number to binary-binary addition and subtraction-21's complement-2's complement-binary subtraction using 2's complement-signed arithmetic operation-conversion of real numbers-conversion of decimal fraction to binary fraction-binary coded decimal -hexadecimal number system-conversion of hexadecimal number to decimal, decimal to hexadecimal, binary to hexadecimal and hexadecimal to binary-real or floating point representation of numbers-ASCII code.

Boolean algebra and logic gates: - Logic gates AND, OR, NOT, NAND,NOR And Ex-OR gate-realization of other logic functions using NAND / NOR gates-tri state logic gate-Boolean laws- Demorgan's theorem-Simplification of Boolean equations using Boolean laws. Karnaugh map

Arithmetic circuits:-Half adder-full adder-controlled inverter-binary adder-subtractor.

Sequential circuits:- Flip-Flop, S-R Flip Flop, J-K Flip-flop, Master slave JK Flip-Flop

Unit2 (11hrs)

Basics of computers:-Hardware- input and output units- memory unit- ALU-control unit-basic operational concepts-Software – operating systems

The memory systems:- Basic concepts-semiconductor RAM- internal organization memory chips-static memories-asynchronous and synchronous DRAM-structure of large memories- ROM,PROM,EPROM, EEPROM- flash memory-speed size and cost-Basic concepts of cache memory and virtual memories. Secondary storage-magnetic hard disks-optical disks-magnetic tape systems.

Unit-3: Programming in C++ (25 hrs)

Features of c++ - basic structure of c++ program – library files-header files – preprocessor directives- inbuilt functions- output using cout- input with cin - constants and variables – data types – declaration of variables – integer variables, character variables, floating point types, type bool - assigning values to variables–manipulators-operators and expressions– arithmetic operators, relational operators, logical operators, short hand operators-control statements-for loops , while loop, do...while loop- if statement, if.....else, else....if constructions, switch statement- break, continue, goto statements-user defined functions-function definition,

function declaration, function header and body, function call and execution, passing arguments to functions, returning values from functions, overloaded functions, inline functions, default arguments, scope rule for functions- storage classes-Arrays-array elements, array initialization, multidimensional arrays, passing arrays to functions-strings-basics of structures and pointers in c++, classes and objects (introduction only)-basic file operations-serial and sequential files, reading and writing -simple examples of c++ programs for solving problems in physics-compilation and execution of data.

Unit 4: Introduction to microprocessors (14 hrs)

Microprocessors and microcontrollers (definition only)-intel 8085- 8 bit microprocessor-pin disruption - 8085 instructions - addressing modes(definition only)- interrupts (definition only) -assembly language - simple programs- addition, subtraction.

Books for study:

1. Fundamentals of Microprocessors and Microcomputers: B. Ram,Dhanpat Rai Publications
2. Digital principles and Applications: Malvino and Leach.TMH, New Delhi, 4th Edn.
3. Fundamentals of Computers: V.Rajaram, PHI, New Delhi, 4th Edn.
4. A first course in Computers: S. Saxena, Vikas Publishing House Pvt. Ltd.,
5. Programming in C++: D. Ravichandran, Tata Mc Graw Hill, 2011
6. Object oriented programming in C++:Robert Lfore, Galgotia publications Pvt Ltd., 3Edn., 2004
7. The C++ programming language:Bjome Stroustrup, 4th Edn. Addison Wesley
8. Object oriented programming with C++: E. Balaguruswami, 5Edn., Tata Mc Graw Hill
9. Programming in C++: M.T. Somasekharan, PHI Pvt. Publishing,2005
10. Numerical Methods with computer programs in C++:P. Ghosh, PHI Learning Pvt. Ltd.

11. The 8085 microprocessors:K. Udayakumar and B. S. Umashankar, Dorling Kindersley (India) Pvt. Ltd.,2008
12. Microprocessor 8085,8086:Abhishek yadav, University Science Press, New Delhi 2008
13. Microprocessor-Architecture, Programming and applications with 8085:R.S. Gaonkar,

Books for Reference: -

1. Introduction to digital electronics:NIIT, PHI.
2. A first course in Computers:Sanjay Saxena, Vikas publishing house Pvt. Ltd.

PRACTICAL

PY1442- Basic Physics Lab 1
(minimum 18 experiments to be done)

1. Fly Wheel - Moment of Inertia
2. Compound Bar Pendulum – Symmetric
3. Compound Bar Pendulum – Asymmetric
4. Uniform Bending---Y---Pin and Microscope
5. Uniform bending—Y- optic lever method
6. Non-uniform bending-Y-Optic lever& telescope
7. Rigidity modulus –Static torsion
8. Torsion pendulum I- By Torsional oscillations
9. Torsion pendulum I- By Equal masses
11. Kater's pendulum-Acceleration due to gravity
12. Melde's string-----Frequency of fork
13. Phase transition-determination of M.P of wax.
14. Determination of thermal conductivity of rubber
15. Lee's disc-determination of thermal conductivity of a bad conductor
16. Viscosity-Continuous flow method using constant pressure head.
17. Viscosity-Variable pressure head arrangement
18. Surface tension-Capillary rise
19. Sonometer-frequency of A.C
20. Kundt's tube-determination of velocity of sound.

21. Determination of m and B_h using deflection and vibration magnetometers.
22. Potentiometer-Resistivity.
23. Comparison of least counts of measuring instruments.
24. Evaluation of errors in simple experiments.

References

1. Yarwood and Wittle; Experimental Physics for Students, Chapman & Hall Publishers.
2. An advanced course in practical physics, Chathopadhyaya, Rakshit and Saha, New central agency, Kolkata.
3. A text book of practical physics, S.Viswanathan & Co., Chennai.
4. Advanced Practical Physics, B.L.Worsnop and H.T.Flint, Khosla Publishers, Delhi.

PY1645-Advanced Physics Lab 2
(Minimum 18 experiments to be
done)

1. Spectrometer-A, D and n of a solid prism.
2. Spectrometer –Dispersive power and Cauchy's constants
3. Spectrometer Grating—Normal incidence- N & wavelength
4. Spectrometer-i-d curve
5. Spectrometer- Hollow prism
6. Liquid lens-refractive index of liquid and lens
7. Newton's Rings—Reflected system
8. Air wedge-diameter of a wire
9. Potentiometer-Resistivity.
10. Potentiometer-Calibration of ammeter
11. Potentiometer –Reduction factor of T.G
12. Potentiometer –Calibration of low range voltmeter

13. Potentiometer – Calibration of high range voltmeter
14. Thermoemf-measurement of emf using digital multimeter.
15. Carey Foster's bridge-Resistivity
16. Carey Foster's bridge-Temperature coefficient of resistance.
17. Mirror galvanometer-figure of merit.
18. BG- Absolute capacity of a condenser
19. Conversion of galvanometer into ammeter and calibration using digital Multimeter
20. Conversion of galvanometer into voltmeter and calibration using digital Voltmeter.
21. Circular coil-Calibration of ammeter.
22. Study of network theorems-Thevenin's & Norton's theorems and maximum power transfer theorem.
23. Circular coil-Study of earth's magnetic field using compass box.
24. Absolute determination of m and B_h using box type and Searle's type vibration magnetometers.
25. Searle's vibration magnetometer-comparison of magnetic moments.

References

1. Yarwood and Wittle; Experimental Physics for Students, Chapman & Hall Publishers.
2. An advanced course in practical physics, Chathopadhyaya, Rakshit and Saha, New central agency, Kolkata.
3. A text book of practical physics, S.Viswanathan & Co., Chennai.
4. Advanced Practical Physics, B.L.Worsnop and H.T.Flint, Khosla Publishers, Delhi.

PY1646—Advanced Physics Lab 3
(Minimum 18 experiments to be done – 4
from Computer Science)

ELECTRONICS

1. PN junction Diode (Ge & Si) characteristics-To draw the characteristic curves of a PN junction diode and to determine its ac and dc forward resistances.
2. Full wave (centre tapped) rectifier-To construct a full wave rectifier using junction diode and to calculate the ripple factor with and without shunt filter (10 readings for R_L 100 to 5000).
3. Full wave (centre tapped) rectifier-To construct a full wave rectifier using junction diode and to study effect of L,C, and LC filters on the ripple factor (for different R_L).
4. Bridge rectifier-To construct a bridge rectifier using junction diodes and to calculate the ripple factor with and without shunt filter (10 readings for R_L 100 to 5000).
5. Bridge rectifier- Dual power supply-To construct a dual power supply using bridge rectifier and measure the output voltages for different pair of identical load resistors.
6. Zener diode characteristics-To draw the I-V characteristic of a Zener diode and to find the break down voltage and the dynamic resistance of the diode.
7. Zener diode as a voltage regulator-To construct a voltage regulator using Zener diode and to study the output voltage variation (i) for different R_L and (ii) for different input voltage with same R_L .
8. Transistor characteristics-CE-To draw the characteristic curves of a transistor in the CE configuration and determine the current gain, input impedance and output impedance.
9. Transistor characteristics-CB-To draw the characteristic curves of a transistor in the CB configuration and determine the current gain, input impedance and output impedance.
10. Single stage CE amplifier-To construct a single stage CE transistor amplifier and study its frequency response.
11. OP amp. IC741- Inverting amplifier-To construct an inverting amplifier using IC741 and determine its voltage gain.

12. OP amp. IC741- Non inverting amplifier

To construct a non inverting amplifier using IC741 and determine its voltage gain.

13. OP amp. IC741- Differentiator-To construct an OP amp. Differentiator, determine its voltage gain and study the output response to pulse and square wave.

14. OP amp. IC741- Integrator-To construct an OP amp. Integrator, determine its voltage gain and study the output response to pulse and square wave.

15. Phase shift oscillator-To construct a phase shift oscillator using transistor and measure the frequency of the output waveform.

16. Logic gates- OR and AND-To verify the truth tables of OR and AND gates using diodes.

17. Logic gate- NOT-To verify the truth tables of NOT gate using a transistor.

18. Network theorems (Superposition, Thevenin's & Norton's theorems)

To verify the (i) Superposition, (ii) Thevenin's & (iii) Norton's theorems

19. RC-Filter circuits (Low pass)

To construct an RC –low pass filter circuit and to find the upper cut off frequency.

20. RC-Filter circuits (High pass)-To construct an RC –high pass filter circuit and to find the lower cut off frequency.

Computer Science (C++ Programs)

1. Program to find the roots of a quadratic equation (both real and imaginary root)
2. Program to find the dot product and cross product of vectors
3. Program to plot the functions Sin x, Tan x and e^x
4. Program to find the matrix addition, multiplication, trace, transpose and inverse.

5. Program to convert hexadecimal to decimal number, decimal to hexadecimal number, binary to hexadecimal numbers and hexadecimal to binary numbers
6. Program to find the result of binary addition and subtraction.
7. Program to find the moment of inertia of regular bodies about various axes of rotation.
8. Program to find the velocity of a rolling body (without sliding) at any point in an inclined plane
9. Program to study the motion of a spherical body in a viscous fluid
10. Program to study the motion of projectile in central force field
11. Program to study the planetary motion and Kepler's law
12. Monte carlo simulation

References:

1. Basic electronics and linear circuits; N.N. Bhargava, D.C. Kulshreshtha, S.C.Gupta
2. OP- Amps and linear integrated circuits; Ramakant A. Gayakwad
3. Basic electronics; Santiram Kal
4. Basic electronics; B. L. Theraja
5. Principles of electronics; V. K. Mehta
6. A first course in Electronic s; Anwar A. Khan, Kanchan K. Dey

PY1661. ELECTIVE COURSES

(54 HOURS-2CREDITS) FOR EACH COURSE

PY1661.1 ELECTRONIC INSTRUMENTATION

Unit 1 (14 hrs)

Basic concepts of measurements- Instruments for measuring basic parameters-

ammeter-voltmeters-multimeter- digital voltmeter-accuracy and resolution of DVM.

Unit 2 – Oscilloscopes (14 hrs)

Cathode ray tubes- CRT circuits- vertical deflection system- delay line- horizontal deflection system-multiple trace- oscilloscope probes and transducer- storage oscilloscopes.

Unit 3 – Transducers (10 hrs)

Basic principles- classification of transducers- Passive and Active transducers- strain gauges- temperature measurements- thermistors-photosensitive devices.

Unit 5 – Signal Generation and

Analysis (16 hrs)

Sine wave generator- frequency synthesizer- sweep generator- astable multivibrator- laboratory pulse generator- function generator- wave analysers harmonic distortion analyzer- wave meter- spectrum analyzer (qualitative idea only).

Books for Study:

1. Modern Electronic Instrumentation and Measurement Techniques: Albert D.Helfrick & William D.Cooper, PHI, Ltd.
2. Electronic Instrumentation:Kalsi H. S, 2nd Edn, TMH Publishers.
3. Instrumentation-Devices and Systems: C.S. Rangan, G.R.Sarma, V.S.V.Mani, TMH Publishers.
4. Electronic Instruments and Instrumentation Technology: M.M.S.Anand, PHI Ltd.

Books for Reference:

1. Sensors and Transducers: D.Patranabis, Wheeler Publishing Co. Ltd.
2. Industrial Electronics and Control: S.K.Bhattacharya & S.Chatterjee, TMH Publishers.
3. Electronic measurement and Instrumentation: K.B.Klaassen,Cambridge University Press.
4. Measurement Systems-Applications and Design: Ernest O.Doebelin & Dhanesh N.Manik, 5th Edn.TMH Publishers.

5. Principles of Measurement systems: John P.Bentley,Longman, Pearson Education Publishers. 3rd Edn.

**PY1661.2. SPACE SCIENCE
54 HOURS-2CREDITS)**

Unit 1. Universe (12 hrs) [Book3]

Large Scale Structure of the Universe: Astronomy and Cosmology, Our Galaxy, Galaxy types, Radio sources, Quasars, Structures on the largest scale, Coordinates and catalogues of astronomical objects, Expansion of the Universe

Unit 2. The evolution of Stars (9hrs) [Book4]

Introduction, Classification of Stars: The Harvard classification, Hertzsprung – Russel diagram, Stellar evolution, White dwarfs, Electrons in a white dwarf star, Chandrasekhar limit, Neutron stars, Black holes, Supernova explosion, Photon diffusion time, Gravitational potential energy of a star, Internal temperature of a star, Internal pressure of a star.

Unit 3. The active Sun (10 hrs) [Book2]

Introduction, Sunspots and Solar storms, Sunspots and Solar activity, Cosmic rays of Solar origin, The Solar wind, Solar corona and the origin of the solar wind, Disturbed Solar wind.

The earth's Atmosphere (15 hrs) [Book 1]

Introduction, Nomenclature and temperature profile, Temperature distribution in the troposphere, Temperature of stratosphere, temperature of mesosphere and thermosphere, Temperature variability, The pressure profile, Scale height, Density variation. The Ionosphere: Effect on scale height, Ionospheric electric fields, Ionization profile, Layer of charge, Ionospheric hydrogen and Helium.

Magnetosphere (8 hrs) [Book 2]

Introduction, The magnetic field of Earth, Earth's variable magnetic field, Solar activity and Earth's magnetic weather, solar wind interaction, The Chapman-Ferraro closed magnetosphere, Dungey's open magnetosphere, Structure of the

magnetosphere: Magneto tail and Plasma sheet, Plasma sphere, Earth's radiation belts.

Books for Study

1. Introduction to Space Science – Robert C Hymes (1971), John Wiley & Sons Inc.
2. Earth's Proximal Space- Chanchal Uberoi (2000), Universities Press (India)
3. Introduction to Cosmology- J. V. Narlikar (1993), Cambridge University Press
4. Modern Physics- R. Murugeshan, Kiruthika Sivaprasath (2007), S.Chand & Company Ltd.

Books for reference

1. Space Physics and Space Astronomy – Michael D Pappagiannis (1972), Gordon and Breach Science Publishers Ltd.
2. Introductory Course on Space Science and Earth's environment-Degaonkar (Gujarat University, 1978)
3. Introduction to Ionosphere and magnetosphere- Ratcliffe (CUP, 1972)
4. The Physics of Atmospheres-Houghton (Cambridge University Press)
5. Introduction to Ionospheric Physics-Henry Rishbeth & Owen K. Garriot (Academic Press, 1969)
6. Space Science –Louise K. Harra& Keith O. Mason(Imperial College Press,London, 2004)
7. Introduction to Space Physics- Kivelson and Russel
8. Introduction to Astrophysics – Baidyanadh Basu
9. Astrophysics - K. D. Abhayankar (University Press)

PY1661.3. PHOTONICS

(54 HOURS)

Unit 1: (5 hrs)

Photons in semiconductors-semiconductors-energy band and charge carriers-direct and indirect gap semiconductors –Different type of semi conducting materials--generation, recombination and injection-electron hole injection homo andhetero junctions-quantum wells ,quantum dots and quantum wires.

Unit 2: (6 hrs)

Semiconductor photon sources -light emitting diodes-injection electroluminescence-in thermal equilibrium –in the presence of carrier injection-LED characteristics- internal photon flux-output photon flux and efficiency-responsivity- spectral distribution- materials- response time-device structures (Basics).

Unit 3: (10 hrs)

Semiconductor laser amplifiers-gain-amplifier band width-optical pumping-electrical current pumping-hetero structures -semiconductor injection lasers-amplification-feedback and oscillators-laser amplification-resonator losses -gain condition-Laser threshold-Power-internal photon flux-output photon flux.

Unit 4: (10 hrs)

Semiconductor photon detectors-The external photo effect-photo electron emission-The internal photo effect-properties of semiconductor photo detectors--quantum efficiency-responsivity devices with gain-response time-photoconductors-gain-spectral response- p-n photo diodes-PIN photo diodes-hetero structure photo diode- Schotky barrier photodiodes - array detectors-avalanche photodiodes (basics)-

Unit 5: (8 hrs)

Electro optics, Pockels and Kerr effects- electro optic modulators and switches phase modulators–dynamic wave retarders- intensity Modulators- scanners-directional couplers-spatial light modulators-

Unit 6: (7 hrs)

Non linear optics-second order non-linear optics - electro-optic effect-three wave mixing- third order non-linear optics- self phase modulation-optical kerr effect-self focusing. .

Unit 7: (8 hrs)

Photonic switching and computing-photonic switches-switches-opto mechanical, electro optic, acousto-optic and magneto optic switches-all optical switches-optical computing-digital optical computing-analog optical processing.

Book for Study:

1. Fundamentals of Photonics: BFA Saleh and M.C.Teich, John Wiley & Sons, Inc.

Books for Reference:

1. Semiconductor optoelectronic devices: Pallab Bhattacharya, Printice Hall of India.
2. Optics and Photonics- An introduction: F. Graham Smith and Terry A.King, John Wiley & Sons, Inc.
3. Lasers and Non linear Optics: B.B.Laud, New Age International Pvt Ltd.

Core Course – XII (ELECTIVE) 54 hrs (Credit – 2)

PY 1661.4: NANO SCIENCE AND TECHNOLOGY

Module 1: Introduction : (6 Hrs)

Length scales in Physics- nanometre- Nanostructures: Zero, One Two and Three dimensional nanostructures (Chapter 3, Text 2)

Band Structure and Desnsity of State at nanoscale: Energy Bands, Density of States at low dimensional structures. (Chapter 3, Text 1)

Module 2: Electrical Transport in Nanostructure: (15 hours)

Electrical conduction in metals, The free electron model. Conduction in insulators/ionic crystals - Electron transport in semiconductors - Various conduction mechanisms in 3D (bulk), 2D(thin film) and low dimensional systems: Thermionic emission, field enhanced thermionic emission (Schottky effect). (Chapter 4, Text 1)

Module 3: Introductory Quantum Mechanics for Nanoscience: (8 hrs)

Size effects in small systems, Quatum behavious of nanometric world: Applications of Schrödinger equation – infinite potential well, potential step, potential box; trapped particle in 3D (nanodot), electron trapped in 2D plane (nanosheet), electrons moving in 1D (nanowire, nanorod, nanobelt), Excitons, Quantun confinement effect in nanomaterials (Chapter 5, Text 1)

Module 4: Growth Techniques of Nanomaterials (Elementary ideas only): (9 hrs)

Top down vs bottom up techniques, Lithographic process, Non Lithographic techniques: Plasma arc discharge, sputtering. Evaporation: Thermal evaporation, Electron beam evaporation. Chemical Vapour Deposition (CVD). Pulsed Laser Deposition, Molecular Beam Epitaxy, Sol-Gel Technique, Electro-deposition., Ball-milling. (Chapter 6, Text 1)

Module 5: Characterization tools of nanomaterials: (Qualitative ideas only) (10 hrs)

Atomic Structures -Grain size determination – XRD (Debye Scherrer equation), Microscopy – Scanning Electron Microscope (SEM), Tunneling Electron Microscope (TEM), Scanning Probe Microscope (SPM), Scanning Tunneling Microscope (STM), Atomic Force Microscope (AFM). (Text -1).

Module 6: Applications of nanotechnology: (Elementary ideas only) (6 hrs)

Buckminster fullerene, Carbon nanotube, nano diamomd, BN Nanotune, Nanoelectronics - single electron transistor (no derivation), Molecular machine, Nanobiomartrics (Chapter 8, Text 1).

Applications of nanotechnology: (Elementary ideas only) Potential applications, Expected benefits from nanotechnologies, Can nanotechnology helps in addressing various challenges?, Energy and Energy Efficiency, new energy producers, Medicine, security, Other Applications. (Text book-2, Chapter 5, 6, 7 &8, Nanotechnology: Technology Revolution of 21st Century, Rakesh Rathi, S Chand & Company, New Delhi.).

Text books:

1. Introduction to Nanoscience & Nanotechnology by K. K. Chattopadhyay and A. N. Banerjee, Publisher: PHI Learning and Private Limited
2. Nanotechnology, Rakesh Rathi, S Chand & Company, New Delhi
3. NANO: The Essentials, T.Pradeep, McGraw Hill Education (India) Private Limited

References:

1. Nanoparticle Technology Handbook – M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama (Eds.), Elsevier 2007
2. Encyclopaedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Eds. Brundle, Evans and Wilson, Butterworth – Heinmann, 1992
3. Springer Handbook of nanotechnology, Bharat Bhushan (Ed.), Springer-Verlag, Berlin, 2004
4. Nano Science and Technology, V. S. Muraleedharan and A Subramaniam, Ane Books Pvt. Ltd, New Delhi

5. A Handbook on Nanophysics, John D, Miller, Dominant Publishers and Distributors, Delhi-51
6. Introduction to Nanotechnology, Charles P Poole Jr. and Frank J Owens, Wiley Students Edition
7. Nano-and micro materials, K Ohno et. al, Springer International Edition 2009, New Delhi

PY1661.5. COMPUTER HARDWARE & NETWORKING(54 HRS)

Unit 1 - 3 hrs

P.C. Architecture Functional block diagram of a computer. Processors Introduction to Microprocessor.CISC, RISC processors Type of Processors and their specification.(Intel: Celeron, Pentium family-PII, PIII, PIV, dual core, core 2duo - AMD-K5,K6 series

Unit 2 -10 hrs

Motherboards:Motherboard components Types, Form factor, Different components of Motherboard (BIOS, CMOS,BICMOS, RAM, CMOS Battery, I/O slots, I/O connectors), Riser architecture, Main Memory (SIMM, DIMM, RIMM), extended/expanded/cache memories. Chipsets (Intel & AMD)-ROM, DRAM, SDRAM, CDRAM, RDRAM, WRAM. Bus standards: Types of Buses (PC, ISA, MCA, AGP, PCI, USB, IEEE FireWire).Add on Cards Different latest Add on Cards (TV Tuner Card, DVR card, Video Capture,Internal Modem, Sound Card)

Unit 3 -9 hrs

Drivers:

1. Floppy Disk Drive- Floppy Drive Components(overview only)

2. Hard Disk Drive (HDD)

Types, Capacity, Hard Disk Components (Media, Read/Write Head, Spindle Motor Head Actuator), Connector, Jumper setting, trouble shooting in HDD.Hard Disk Controller (HDC) – Block diagram,

Working, Interfacing (IDE,SCSI, ATA and SATA series) Configuration of HDD- Installation, Formatting, File Format (FAT, NTFS).Pen drive, i-pods

3.Optical Disk Drive

Types (ROM, R/W, DVD ROM, DVD R/W), Capacity, Difference between CD &DVD (capacity, format)-trouble shooting.

Unit 4 -5 hrs

Peripherals . Keyboard and Mouse- operation

Types of VDU (CRT, LCD, and TFT), Resolution, and Dot pitch -Printers – Types (dot matrix, inkjet, laser) Scanner- operation.Power conditioning Device:SMPS- Block diagram, operation-UPS- Types (online, off line, Hybrid)-trouble shooting in all these devices.

Unit 5- 4 hrs

Viruses & Vaccines-Virus- Introduction, infection methods,Types of viruses, Different symptoms of virus attack, precautions.Vaccine- Method of vaccine, Different types of Antivirus used in PC,Firewalls

Unit 6- 7 hrs**NETWORKING ESSENTIALS**

Introduction-Need for networking-Network Topology-OSI Model-Types of networks (LAN, WAN, MAN)

Protocols-LAN Protocols- Classification, Examples, Ethernet networking-WAN Protocols- PPP, X

.25, PPTP, L2TP, ISDN

Unit 7-- 8 hrs

LAN Connectivity Devices- NIC, Repeater, Hub, Switch, Bridge.Internet Connectivity Device-Routers, Gateways, CSU/DSU-TCP/IP Protocol Suite-What is TCP/IP, Importance, OSI vs TCP/IP

Unit 8- 6 hrs

IP Addressing-Overview, Address classes, Network ID, Host ID and Subnet Mask,Addressing guidelines, Reserved IP Address, Subnetting and Supernetting(overview)

Unit 9 -2 hrs

Emerging Technologies-Wireless Technology - Bluetooth, WAP-Mobile Technology- GSM, CDMA, GPRS

Books for Study:

1. D. Balasubramanian, “Computer Installation & Servicing”, Tata McGraw Hill.
2. Rom Gilster, Black book, “PC Upgrading and Repairing”, Dream tech, New Delhi.

3. Street Smart, James Pyler, "PC Upgrading and Repairing", Wiley Publishing, Inc.
4. Stephen.J.Bigelow,"Bigelow's Troubleshooting, Maintenance & Repairing PCs",Tata McGraw Hill
5. Craig Zacker, "The Complete Reference- Networking", Tata McGraw Hill
6. Douglowe, "Networking All in One Desk Reference"-3Edn, Wiley India Pvt Ltd

Books for Reference:

1. Mark Minasi, "The Complete PC Upgrade & Maintenance Guide" BPB Publication
2. C.A. Schmidt, "The Complete Computer Upgrade & Repair Book", Dreamtech
3. Craig Zacker, John Rourke, "The Complete Reference- PC Hardware" Tata McGraw Hill
4. Scott Mueller, "Upgrading & Repairing PC's", Pearson Education
5. Vishnu Priya Sing & Meenakshi Singh, "Computer Hardware Course", Computech
6. Manahar Lotia, Pradeep Nair, Payal Lotia, "Modern Computer Hardware Course",BPB Publication.
7. Richard Mc Mohan, "Introduction to Networking", Tata McGraw Hill.

Internet Resources:

www.edugrid.ac.in/webfolder/courses/cn/cn_resourses.htm

www.howstuffwork.com

www.e-tutes.com

www.learnthat.com

www.intel.com

www.amd.com

II Complementary Courses

Semester 1 (Mathematics Main)

PY1131.1 – Mechanics and Properties of matter (36 hours)

Unit I (28 hours)

Dynamics of rigid bodies (7 hours)

Theorems of M.I with proof-Calculation of M.I of bodies of regular shapes rectangular lamina, uniform bar of rectangular cross section, annular disc, circular disc, solid sphere-K.E of a rotating body. Determination of M.I of a fly wheel (theory and experiment).

Oscillations and waves (13 hours)

Examples of S.H oscillator-compound pendulum-determination of g -torsion pendulum-oscillations of two particles connected by a spring-vibration state of a diatomic molecule.

Wave motion-general equation of wave motion-plane progressive harmonic wave -energy density of a plane progressive wave -intensity of wave and spherical waves-

Mechanics of solids (8 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear-torsional rigidity, .

Unit II (8 hours)

Surface Tension (5 hours)

Excess of pressure on a curved surface-force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method-equilibrium of a liquid drop over solid and liquid surfaces.

Viscosity (3 hours)

Flow of liquid through a capillary tube-derivation of Poiseuille's formula -limitations-Ostwald's viscometer-variation of viscosity with temperature.

Books for Study

1. Mechanics: J.C.Upadhyaya, Ram Prasad & Sons

2. Oscillations & Waves: K.RamaReddy, S.Bbadami & V.Balasubramaniam
(University Press)

Semester 2 (Mathematics Main)

PY1231.1 – Thermal Physics and statistical mechanics (36 hours)

Unit I – Transmission of Heat (14 hours)

Thermal conductivity and thermometric conductivity-Lee's disc experiment-Weidmann and Franz law (statement only)-energy distribution in the spectrum of black body and results-Wien's displacement law-Rayleigh-Jeans law-their failure and Planck's hypothesis-Planck's law-comparison-solar constant-its determination-temperature of sun.

Unit II – Thermodynamics (9 hours).

Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticityHeat engines-Carnot's cycle -derivation of efficiency-petrol and diesel engine cycles-efficiency in these two cases-second law of thermodynamics-Kelvin and Clausius statements.

Unit III – Entropy (9 hours)

Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.

Unit 4- Statistical Mechanics(4hours)

Statistical probability-Macro and Microstates- Phase space-statistical ensemble-postulates of equal probability-Maxwell Boltzmann Distribution- velocity distribution.

Books for Study

1. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
2. Heat & Thermodynamics: W.Zemansky, McGraw Hill
3. Heat & Thermodynamics: C.L.Arora.

Semester 3 (Mathematics Main)

PY1331.1 – Optics, Magnetism and Electricity (54 hours)

Unit I (34 hours)

Interference (12 hours)

Analytical treatment of interference-theory of interference fringes and

bandwidth. Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness -Newton's rings-reflected system-measurement of wavelength and refractive index of liquid.

Diffraction (14 hours)

Phenomenon of diffraction-classification-Fresnel and Fraunhofer. Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge and circular aperture. Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength.

Laser and Fibre Optics (8 hours)

Principle of operation of laser-population inversion-optical pumping-ruby laser applications of lasers. Light propagation in optical fibres-step index fibre-graded index fibre-applications.

Unit II (20 hours)

Magnetism (10 hours)

Magnetic properties of matter-definition and relation between magnetic vectors B, H and M. Magnetic susceptibility and permeability. Magnetic properties-diamagnetism-paramagnetism-ferromagnetism-antiferromagnetism. Electron theory of magnetism-explanation of ferromagnetism.

Electricity (10 hours)

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers.

Books for Study

1. A text book of optics – Brijlal & Subramaniam
2. Electricity and Magnetism – R.Murugeshan, S.Chand & Co Ltd.
3. A text book of B.Sc subsidiary Physics – P.Vivekanandan.

Semester 4 (Mathematics Main)

PY1431.1 Modern Physics and Electronics (54 hours)

Unit 1..Modern Physics (20 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-

Atomic nucleus-basic properties of nucleus-charge, mass, spin, magnetic moment-binding energy and packing fraction-nuclear forces-salient features-radioactivity-radioactive decay-decay laws-decay constant-half life and mean life-radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity.

Quantum Mechanics (10 hours)

Inadequacies of classical physics-experimental evidences- quantum theory- Planck's hypothesis-foundation of quantum mechanics-wave function and probability density-Schrödinger equation-time dependent and time independent-particle in a potential box.

Unit2.

(20hours)Electronics(1 6hour)

Current-voltage characteristics of a diode-forward and reverse bias-breakdown mechanism of p -n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency.

Construction and operation of a bipolar junction transistor-transistor configurationscurrent components-transistor characteristics-DC load line-Q point-AC load linetransistor biasing-need for biasing-bias stabilization-biasing circuits-voltage divider bias. amplifier-basic features of an amplifier-gain, -frequency response and band width

Digital Electronics (8 hours)

Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates. Boolean algebra-Boolean operations -logic expressions-laws of Boolean algebra-DeMorgan's theorem-Boolean expression for gate network-simplification of Boolean expression.

Books for Study:

1. Modern Physics – R.Murugesan, S.Chand & Co. Ltd.
2. Principles of Electronics – V.K.Mehta.

Semester 1 (Chemistry Main)

PY1131.2 – Rotational dynamics and Properties of matter (36 hours)

Unit I (28 hours)

Dynamics of rigid bodies (7 hours)

Theorems of M.I with proof -Calculation of M.I of bodies of regular shapes-

rectangular lamina, uniform bar of rectangular cross section, annular disc, circular

disc, solid cylinder, solid sphere-K.E of a rotating body-Determination of MI of a flywheel(Theory and Experiment).

Oscillations and waves (13 hours)

Examples of S.H oscillator-compound pendulum-determination of g-torsion pendulum-oscillations of two particles connected by a spring-vibration state of a diatomic molecule-

Wave motion-general equation of wave motion-plane progressive harmonic wave - energy density of a plane progressive wave -intensity of wave and spherical waves-

Mechanics of solids (8 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends-and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear-torsional rigidity.

Unit II (8hours)

Surface Tension (5 hours)

Excess of pressure on a curved surface-force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method-equilibrium of a liquid drop over solid and liquid surfaces.

Viscosity (3 hours)

Flow of liquid through a capillary tube-derivation of Poiseuille's formula -limitations-Ostwald's viscometer-variation of viscosity with temperature.

References

1. Mechanics: J.C.Upadhyaya, Ram Prasad & Sons
2. Oscillations&Waves: K.RamaReddy, S.B.badami & V.Balasubramaniam (University Press)

Semester 2 (Chemistry Main)
PY1231.2 – Thermal Physics (36 hours)

Unit I – Diffusion (4 hours)

Graham's law of diffusion in liquids-Fick's law-analogy between liquid diffusion and heat conduction-methods of estimating concentrations-determination of coefficient of diffusivity.

Unit II. Transmission of Heat (14hours)

Thermal conductivity and thermometric conductivity – Lee's Disc experiment-Weidmann and Franz law (statement only) -Radiation of heat-black body radiation-Kirchoff's laws of heat radiation-absorptive power-emissive power-Stefan's law (no derivation) -energy distribution in the spectrum of black body and results-Wien's displacement law - Rayleigh-Jeans law-their failure and Planck's hypothesis -Planck's law-comparison-solar constant-temperature of sun.

Unit III – Thermodynamics (9 hours)

Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity. Heat engines-carnot's cycle -derivation of efficiency-petrol and diesel engine cycles-efficiency in these two cases-second law of thermodynamics-Kelvin and Clausius statements.

Unit IV – Entropy (9 hours)

Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.

References

1. The general Properties of matter: F.H.Newman & V.H.L.Searle
2. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
3. Heat & Thermodynamics: W.Zemansky, McGraw Hill
4. Heat & Thermodynamics: C.L.Arora.

Semester 3 (Chemistry Main)

PY1331.2 – Optics, Magnetism and Electricity (54 hours)

Unit I (34 hours)

Interference (11 hours)

Analytical treatment of interference-theory of interference fringes and bandwidth. Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness. Newton's rings-reflected system-measurement of wavelength and refractive index of a liquid.

Diffraction (11 hours)

Phenomenon of diffraction-classification-Fresnel and Fraunhofer. Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge.

Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength.

Polarisation (6 hours)

Experiments showing the transverse nature of light-plane polarized light-polarization by reflection-Brewster's law-double refraction-Nicol prism-propagation of light in uni-axial crystals-positive and negative crystals-principal refractive indices-half wave plate and quarter wave plate-elliptically and circularly polarized light-optical activity.

Laser and Fibre Optics (6 hours)

Principle of operation of laser-population inversion-optical pumping-ruby laser-applications of lasers. Light propagation in optical fibres-step index fibre-graded index fibre-applications.

Unit II (20 hours)

Magnetism (10 hours)

Magnetic properties of matter-definition and relation between magnetic vectors B, H and M. Magnetic susceptibility and permeability. Magnetic properties-diamagnetism-paramagnetism-ferromagnetism-antiferromagnetism. Electron theory of magnetism-explanation of ferromagnetism.

Electricity (10 hours)

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers.

References

1. A text book of optics – Brijjal & Subramaniam
2. Electricity and Magnetism – R.Murugesan, S.Chand & Co Ltd.
3. A text book of B.Sc subsidiary Physics – P.Vivekanandan .

Semester 4 (Chemistry Main)

PY1431.2 – Atomic Physics, Quantum Mechanics and Electronics (54 hours)

Unit I Atomic physics (12 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table.

Unit II Superconductivity (8 hours)

Properties of superconductors-zero electrical resistance- Meissner effect- electrical magnetic field-Type I and Type II superconductors-isotope effect-high temperature ceramic superconductors-applications of superconductors.

Unit III Quantum mechanics (14 hours)

Inadequacies of classical physics-experimental evidences-evidences for quantum theory-Planck's hypothesis-foundation of quantum mechanics-wave function and probability density-Schrodinger equation-time dependent and time independent-particle in a potential box.

Unit IV. Spectroscopic Techniques(4hours)

EM Spectrum- UV, Visible, IR,, Radio and microwave regions-principle of various spectrometers used in specific regions of EM spectrum-absorption spectroscopy, emission spectroscopy.

Unit V. Electronics (12 hours)

Current-voltage characteristics of a diode -forward and reverse bias-breakdown mechanism of p -n junction diode-zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency. Construction and operation of a bipolar junction transistor-transistor configurationscurrent components-transistor characteristics-DC load line-Q point-

AC load linetransistor biasing-need for biasing-bias stabilization-biasing circuits-fixed bias, emitter feed back bias, voltage divider bias (qualitative study only). Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width

Unit V. Digital Electronics(4hours)

Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates..

References

1. Modern Physics – R.Murugeshan, S.Chand & Co. Ltd.
2. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
3. Principles of Electronics – V.K.Mehta.

Semester 1 (Statistics Main)

PY1131.3 – Mechanics and Properties of matter (36 hours)

Unit I (28 hours)

Dynamics of rigid bodies (8 hours)

Theorems of M.I with proof -Calculation of M.I of bodies of regular shapes-rectangular lamina, uniform bar of rectangular cross section, annular disc, circular disc, solid sphere-K.E of a rotating body. Determination of M.I of a fly wheel (theory and experiment).

Oscillations and waves (12 hours)

Examples of S.H oscillator-compound pendulum-determination of g-torsion pendulum-oscillations of two particles connected by a spring.

Wave motion-general equation of wave motion-plane progressive harmonic wave energy density of a plane progressive wave-intensity of wave and spherical waves transverse waves in stretched string-modes of transverse vibrations of string longitudinal waves in rods and in gases.

Mechanics of solids (8 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends-and loaded in the middle-uniform bending-experimental determination of Y using the

above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear-torsional rigidity.

Unit II (8 hours)

Surface Tension (5 hours)

Excess of pressure on a curved surface-force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method-equilibrium of a liquid drop over solid and liquid surfaces.

Viscosity (3 hours)

Flow of liquid through a capillary tube-derivation of Poiseuille's formula -limitations-Ostwald's viscometer-variation of viscosity with temperature.

References

1. Mechanics: J.C.Upadhyaya, Ram Prasad & Sons
2. Oscillations & Waves: K.RamaReddy, S.Bbadami & V.Balasubramaniam (University Press)

Semester 2 (Statistics Main)

PY1231.3 – Thermal Physics and statistical mechanics (36 hours)

Unit I – Transmission of Heat (8 hours)

Thermal conductivity and thermometric conductivity-Lee's disc experimentWeidmann and Franz law (statement only)-energy distribution in the spectrum of black body and results-Wien's displacement law.

Unit II – Thermodynamics (8 hours)

Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity.Heat engines-carnot's cycle-derivation of efficiency- second law of thermodynamicsKelvin and Clausius statements.

Unit III – Entropy (8 hours)

Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.

Unit IV – Statistical Mechanics (12 hours)

Concepts of phase-space-ensemble and statistical equilibrium-probability

theorems in

statistical thermodynamics-distribution laws-Maxwell-Boltzman, Fermi -Dirac and Bose-Einstein distribution laws (no derivation)-comparison of three statistics-Molecular energies in an ideal gas-Quantum statistics-Rayleigh-Jeans formulaPlanck's radiation law-specific heat of solids-free electrons in metals-electron energy distribution.

References

1. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
2. Heat & Thermodynamics: W.Zemansky, McGraw Hill
3. Heat & Thermodynamics: C.L.Arora.
4. Concepts of modern physics: Arthur Beiser (TMH).
5. Statistical Mechanics: Sinha (TMH).
6. Theoretical Chemistry: Samuel Gladstone, New York, D Van Nostrand Co., Inc.
7. Heat: Saha and Srivastava.

Semester 3 (Statistics Main)

PY1331.3 –Optics , Magnetism and Electricity (54 hours)

Unit I (34 hours)

Interference (12 hours)

Analytical treatment of interference-theory of interference fringes and bandwidth. Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness. Newton's rings-reflected system-measurement of wavelength and refractive index of liquid.

Diffraction (14 hours)

Phenomenon of diffraction-classification-Fresnel and Fraunhofer. Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge and circular aperture. Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength-Resolving power of grating.

Laser and Fibre Optics (8 hours)

Principle of operation of laser-population inversion-optical pumping-ruby laserapplications of lasers. Light propagation in optical fibres-step index fibre-graded index fibre-applications.

Unit II (20 hours)

Magnetism (10 hours)

Magnetic properties of matter-definition and relation between magnetic vectors B, H and M. Magnetic susceptibility and permeability. Magnetic properties-diamagnetism-paramagnetism-ferromagnetism-antiferromagnetism. Electron theory of magnetism-explanation of ferromagnetism.

Electricity (10 hours)

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers.

References

1. A text book of optics – Brijlal & Subramaniam
2. Electricity and Magnetism – R.Murugesan, S.Chand & Co Ltd
1.
3. A text book of B.Sc subsidiary Physics – P.Vivekanandan.

Semester 4 (Statistics Main)

PY1431.3 – Modern Physics and Electronics (54 hours)

Unit I

Modern Physics (20 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table.

Atomic nucleus-basic properties of nucleus-charge, mass, spin, magnetic moment-binding energy and packing fraction-nuclear forces-salient features-radioactivity-radioactive decay-decay laws-decay constant-half life and mean life- Radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity.

Quantum mechanics (14 hours)

Inadequacies of classical physics-experimental evidences-evidences for quantum theory-Planck's hypothesis-foundation of quantum mechanics-wave function and probability density-Schrodinger equation-time dependent and time independent-particle in a potential box.

Unit II (20 hours)**Electronics (12 hours)**

Current-voltage characteristics of a diode -forward and reverse bias-breakdown

mechanism of p -n junction diode-zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency.

Construction and operation of a bipolar junction transistor-transistor configurations-current components-transistor characteristics-DC load line-Q point-AC load line-transistor biasing-need for biasing-bias stabilization-biasing circuits-fixed bias, emitter feed back bias, voltage divider bias (qualitative study only).

Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width.

Digital Electronics (8 hours)

Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates. Boolean algebra-Boolean operations -logic expressions-laws of Boolean algebra-DeMorgan's theorem-Boolean expression for gate network-simplification of Boolean expression.

References

1. Modern Physics – R.Murugesan, S.Chand & Co. Ltd.
2. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
3. Principles of Electronics – V.K.Mehta.

Semester 1 (Geology Main)**PY1131.4 – Mechanics and Properties of matter (36 hours)****Unit I (29 hours)****Dynamics of rigid bodies (7 hours)**

Theorems of M.I with proof -Calculation of M.I of bodies of regular shapes-rectangular lamina, uniform bar of rectangular cross section, annular disc, circular

disc, solid cylinder, solid sphere-K.E of a rotating body- Determination of MI of a flywheel(Theory and Experiment).

Oscillations and waves (15 hours)

Examples of S H oscillator- compound pendulum- determination of g-torsion pendulum-oscillations of two particles connected by a spring- vibrational state of diatomic molecule -damped and forced harmonic oscillators-damping force-damped harmonic oscillator -examples-power dissipation-Q factor. Wave motion-general equation of wave motion-plane progressive harmonic wave intensity of wave and spherical waves-waves in solids-longitudinal waves –transverse waves-torsional waves-common characteristics-reflection and transmission of waves-reflection and transmission of energy- flexural vibrations-applications of geophysicscharacteristics-reflection and transmission of waves-reflection and transmission of energy-flexural vibrations-applications in geophysics.

Mechanics of solids (7 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends-and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear-torsional rigidity.

Unit II (7 hours)

Surface Tension (4 hours)

Excess of pressure on a curved surface-force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method-equilibrium of a liquid drop over solid and liquid surfaces.

Viscosity (3 hours)

Flow of liquid through a capillary tube-derivation of Poiseuille's formula -limitations-Ostwald's viscometer-variation of viscosity with temperature.

References

1. Mechanics: J.C.Upadhyaya, Ram Prasad & Sons
2. Oscillations & Waves: K.RamaReddy, S.B.badami & V.Balasubramaniam (University Press)

Semester 2 (Geology Main)
PY1231.4 – Thermal Physics and Physics of the Earth (36 hours)

Unit I – Transmission of Heat (9 hours)

Thermal conductivity and thermometric conductivity-Lee's disc experiment-Weidmann and Franz law (statement only)-energy distribution in the spectrum of black body and results-Wien's displacement law-Rayleigh-Jeans law-their failure and Planck's hypothesis-Planck's law -comparison-solar constant-temperature of sun.

Unit II – Thermodynamics (9 hours)

Isothermal and adiabatic process- work done -isothermal and adiabatic elasticity Heat engines-carnot's cycle -derivation of efficiency-petrol and diesel engine cycles-efficiency in these two cases-second law of thermodynamics-Kelvin and Clausius statements-Carnot's theorem with proof.

Unit III – Physics of the Earth (18 hours)

The solar system-origin of solar system-the dynamic earth-continental drift-earth's

structure-earth's size and shape-gravitation-gravitational field and potential-equipotential surfaces-gravitational field and potential due to a thin spherical shell and solid sphere-gravitational self energy-gravity measurements-free fall method-rise and fall method-gravity anomalies. The tide-tidal effect of sun-earth quakes-causes seismic wave propagation-seismographs. Atmospheric physics-atmospheric structure and composition-atmospheric pressure, density and temperature-measurement of air temperature-daily cycle of air temperature-atmospheric radiation-ionosphere-magnetosphere.

References

1. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
2. Heat & Thermodynamics: W.Zemansky, McGraw Hill
3. Heat & Thermodynamics: C.L.Arora.
4. Fundamentals of Geophysics: William Lowrie, Cambridge University Press.
5. Applied Physics: G.Aruldas et al, Rajam publishers, Tvpm.

Semester 3 (Geology Main)
PY1331.4 – Optics and Electrodynamics (54 hours)

Unit I (34 hours)

Interference (12 hours)

Analytical treatment of interference-theory of interference fringes and bandwidth. Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness. Newton's rings-reflected system-measurement of wavelength and refractive index of liquid.

Diffraction (14 hours)

Phenomenon of diffraction-classification-Fresnel and Fraunhofer. Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge and circular aperture. Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength-Resolving power of grating.

Polarisation (8 hours)

Experiments showing the transverse nature of light-plane polarized light-polarization by reflection-Brewster's law-double refraction-Nicol prism-propagation of light in uni-axial crystals-positive and negative crystals-principal refractive indices-half wave plate and quarter wave plate-elliptically and circularly polarized light-optical activity-Fresnel's theory and applications.

Unit II (20 hours)

Magnetism (12 hours)

Magnetic properties of matter-definition and relation between magnetic vectors B, H and M. Magnetic susceptibility and permeability. Magnetic properties-diamagnetism-paramagnetism-ferromagnetism-anti-ferro magnetism. Electron theory of magnetism-Explanation of ferromagnetism
Earth's magnetism-dip- inclination -vertical components-magnetic maps -magnetographs -cause of earth's magnetism geomagnetic prospecting.

Electricity (8 hours)

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers.

Books for study:

1. A text book of optics – Brijlal & Subramaniam
2. Electricity and Magnetism – R.Murugeshan, S.Chand & Co Ltd.
3. A text book of B.Sc. subsidiary Physics – P.Vivekanandan.

Semester 4 (Geology Main)

PY1431.4 – Modern Physics, Electronics and Crystallography(54hours)

Unit I

Modern Physics (20 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table.

Atomic nucleus-basic properties of nucleus-charge, mass, spin, magnetic moment-binding energy and packing fraction-nuclear forces-salient features-radioactivity-radioactive decay-decay laws-decay constant-half life and mean life-radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity-radio carbon dating-age of the earth-biological effects of radiation. Crystallography (16 hours)

Crystal structure-crystal lattice and translation vectors-unit cell-symmetry operations point groups and space groups-types of lattices-lattice directions and planes interplaner spacing-simple crystal structures-close packed structures-structure of diamond-zinc blend structure-sodium chloride structure. X-ray crystallography-diffraction of x -rays-Bragg's law-x-ray diffraction methods-rotating crystal method-powder diffraction method.

Unit II (18 hours)

Electronics (10 hours)

Current-voltage characteristics of a diode -forward and reverse bias-breakdown mechanism of p-n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency.

Construction and operation of a bipolar junction transistor-transistor configurations-current components-transistor characteristics-DC load line-Q point-AC load line-transistor biasing-need for biasing-bias stabilization-biasing circuits-fixed bias-emitter feedback bias, voltage divider bias (qualitative study only).

Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width-small signal CE amplifier-circuit and its operation

Digital Electronics (8 hours)

Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates. Boolean algebra-Boolean operations -logic expressions-laws of Boolean algebra-DeMorgan's theorem-Boolean expression for gate network-simplification of Boolean expression.

References

1. Modern Physics – R.Murugesan, S.Chand & Co. Ltd.
2. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
3. Principles of Electronics – V.K.Mehta.

Semester 1 (Home Science Main)

PY1131.5–Mechanics and Properties of matter (36 hours)

Unit I (26 hours)

Dynamics of rigid bodies (8 hours)

Theorems of M.I with proof -Calculation of M.I of bodies of regular shapes-

rectangular lamina, uniform bar of rectangular cross section, annular disc, circular

circular disc, solid cylinder, solid sphere-K.E of a rotating body-Determination of MI of fl heel(Theory and experiment)

Oscillations and waves (12 hours)

Examples of S.H oscillator- oscillations of two particles connected by a springvibration state of a diatomic molecule..Wave motion-general equation of wave motion-plane progressive harmonic wave - energy density of a plane progressive wave-intensity of wave and spherical waves-

Mechanics of solids (6 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends-and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear-

Unit II (10 hours) Surface Tension (5hours)

Excess of pressure on a curved surface-force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension and its temperature dependence by Jaeger' method-equilibrium of a liquid drop over solid and liquid surfaces.

Viscosity (5 hours)

Flow of liquid through a capillary tube -derivation of Poiseuille's formula-limitations - variation of viscosity with temperature-Stokes formula-determination of viscosity of a highly viscous liquid by Stokes method.

References

1. Mechanics: J.C.Upadhyaya, Ram Prasad & Sons
2. Oscillations & Waves: K.RamaReddy, S.Bbadami & V.Balasubramaniam
(University Press)

Semester 2 (Home Science Main)

PY1231.5 – Thermal Physics (36 hours)

Unit I – Diffusion (4 hours)

Graham's law of diffusion in liquids-Fick's law-analogy between liquid diffusion and heat conduction-methods of estimating concentrations-determination of coefficient of diffusivity.

Unit II – Transmission of Heat (14hours)

Thermal conductivity and thermometric conductivity- disc experiment
Lee's
Weidmann and Franz law (statement only) -Radiation of heat-black body radiation - absorptive power-emissive power-Stefan's law (no derivation) -energy distribution in the spectrum of black body and results-Wien's displacement law -Rayleigh-Jeans law -

their failure and Planck's hypothesis-Planck's law-comparison-solar constanttemperature of sun.

Unit III – Thermodynamics (10 hours)

Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity. Heat engines-carnot's cycle -derivation of efficiency-petrol and diesel engine cycles-efficiency in these two cases-second law of thermodynamics-Kelvin and Clausius statements.

Phase transition- first order and second order-liquid helium-super fluidity.

Unit IV – Entropy (8 hours)

Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-entropy and available energy-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.

References

1. The general Properties of matter: F.H.Newman & V.H.L.Searle
2. Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
3. Heat & Thermodynamics: W.Zemansky, McGraw Hill
4. Heat & Thermodynamics: C.L.Arora.

Semester 3 (Home Science Main)

PY1331.5 – Optics and Electricity (54 hours)

Unit I (34 hours)

Interference (12 hours)

Analytical treatment of interference-theory of interference fringes and bandwidth.Interference in thin films-reflected system-colour of thin films-fringes of equal inclination and equal thickness.Newton's rings-reflected system-measurement of wavelength and refractive index of liquid.

Diffraction (14 hours)

Phenomenon of diffraction-classification-Fresnel and Fraunhofer.Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge and circular aperture. Fraunhofer diffraction at a single slit, two slits and N slits. Plane transmission grating-determination of wavelength.

Laser and Fibre Optics (8 hours)

Principle of operation of laser-population inversion-optical pumping-ruby laser-applications of lasers.

Light propagation in optical fibers-step index fibre-graded index fibre-applications.

Unit II (20 hours)

Electricity

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers.

Electric motors- principles of working- Devices working with electric motors-Electric fan- wet grinder, Mixer grinder, Microwave oven – principle – technical specifications - applications – advantages,

References

1. A text book of optics – Brijlal & Subramaniam
2. Electricity and Magnetism – R.Murugesan, S.Chand & Co Ltd.
3. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
4. Electrical Technology (Vol I & II), B.L.Theraja.

Semester 4 (Home Science Main)

PY1431.5 – Atomic Physics and Electronics (54 hours)

Unit I

Modern Physics (20 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table.

Atomic nucleus-basic properties of nucleus -charge, mass, spin magnetic moment-binding energy and fraction-nuclear forces-salient features-packing radioactivity-

radioactive decay-decay laws-decay constant-half life and mean life-radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity-

Unit II Superconductivity (8 hours)

Properties of superconductors-zero electrical resistance-Meissner effect-critical magnetic field-Type I and Type II superconductors-isotope effect-high temperature ceramic superconductors-applications of superconductors.

Unit III Spectroscopic Techniques (8 hours)

EM spectrum-UV, Visible, IR, Radio and microwave regions-principle of various spectrometers used in specific regions of EM spectrum-absorption spectroscopy-emission spectroscopy-mass spectroscopy-qualitative ideas of ESR & NMR spectrometer.

Unit IV (18 hours)

Electronics (10 hours)

Current-voltage characteristics of a diode-forward and reverse bias-breakdown

mechanism of p -n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency. Construction and operation of a bipolar junction transistor-transistor configurations-current components-transistor characteristics-DC load line-Q point-AC load line-transistor biasing-need for biasing-bias stabilization-biasing circuits-fixed bias, emitter feedback bias, voltage divider bias (qualitative study only).

Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width-small signal CE amplifier-circuit and its operation

Digital Electronics (8 hours)

Number systems and codes-decimal numbers-binary arithmetic -1's and 2's compliment-decimal to binary conversion-octal numbers-hexadecimal numbers-binary coded decimal-digital codes-logic gates-NOT, OR, AND, NOR and NAND gates.Boolean algebra-Boolean operations -logic expressions-laws of Boolean algebra-DeMorgan's theorem-Boolean expression for gate network-simplification of Boolean expression.

References

1. Modern Physics – R.Murugesan, S.Chand & Co. Ltd.
2. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
3. Principles of Electronics – V.K.Mehta.

Complementary Electronics for Physics Main Semester 1

EL 1131-ELECTRONICS I

(36 HOURS)

Unit 1 Circuit Elements and Fundamentals (10 hour)

Ohm's Law, Linear and non-linear Resistors, Resistor types-Wire wound Resistors, Carbon composition Resistors, Carbon film Resistors, Metal film Resistors, Resistor Colour code, Resistive circuits, Series and Parallel Resistor

circuits, Series aiding and Series opposing Voltages, Proportional Voltage formula, Proportional Current formula, Series Voltage Dividers, ‘Open’ and ‘Short’ in Series, Parallel and Series –Parallel Circuits.

Inductor, Inductor Types- Air core inductor, Iron-core Inductor, Ferrite-core Inductor, Self Inductance, Mutual Inductance, Coefficient of Coupling, Inductors in Series or Parallel without M, series combination with M, Stray Inductance, Reactance offered by a Coil.

Capacitors, Type of Capacitors- Fixed Capacitors, Variable Capacitors, Capacitance, Capacitors in Series and Parallel, Reactance offered by the Capacitor, Cells in Series and Parallel

Unit 2 Network Theorems (6 hour)

Kirchhoff’s Law, Super position theorem, Ideal constant Voltage Source, Ideal constant Current Source, Thevenin’s and Norton’s Theorem, Maximum Power Transfer Theorem(Proof).

Unit 3 Magnetism and A.C (8 hour)

Magnetic Field, Type of Magnets, Magnetic Shielding, Magnetic Terms and Units, Ohm’s Law in Magnetism, Transformer, Transformer working, Transformer Types, Transformer Impedance.

Type of alternating waveforms, Different values of sinusoidal voltage and current, Phase and Phase difference of A.C, Non-sinusoidal waveform, Harmonics, A.C through Resistor, Inductor, Capacitor, L-R, R-C and LCR circuits, Sharpness of resonance, Q-factor, Bandwidth, Tuning of radio, Parallel LCR.

Unit 4 Transient Current (6 hour)

Rise and fall of Current in pure Resistance, Time constant of an L-R Circuit, Inductive Kick, Time constant of an R-C Circuit, Charging and Discharging of capacitor, Decreasing Time Constant, Flasher, Pulse Response of an R-C Circuit, Effect of Long and Short Time Constants.

Unit 5 Introduction to semiconductors(6 hour)

Energy Band, Valance band, Conduction Band, Classification of materials based on energy bands, Type of semiconductors-Intrinsic and Extrinsic, hole formation and its movements, Type of Extrinsic semiconductors-P-type and N-type, Drift current in Intrinsic semiconductors.

Books of Study

- a. Basic Electronics Solid State – B.L.Theraja, S.Chand & Co. Ltd.

b. Principles of Electronics – V.K.Mehta.

Semester 2

EL1231 - Electronics II (36 hours)

Unit I (Chapters 11, 15, 16, 17, 18, 19 of Book 1) – 21 hrs

Tuning circuits and filters (4 hrs), Opto-electronic devices (4 hrs), DC power supplies (5 hrs), The basic transistor (4 hrs), Transistor characteristics and approximations (4 hrs).

Unit II (Chapters 20, 21 of Book 1) – 15 hrs

Load line and DC bias circuits (5 hrs), Transistor equivalent circuits and models (10 hrs).

Books of Study

1Basic Electronics Solid State – B.L.Theraja, S.Chand & Co.
Ltd. 2Principles of Electronics – V.K.Mehta.

EL 1331 - ELECTRONICS III

(Total 54 Hours)

1. Single Stage Transistor Amplifiers (10 Hrs)

Amplifier Classifications - Common Base (CB), Common Emitter (CE) and Common Collector (CC) Amplifier : Gains and Characteristics - Comparison of Amplifier Configurations - Classification of Amplifiers Based on Biasing Conditions - Class A Amplifier - Transformer Coupled Class A Amplifier - Class B Amplifier - Class B Push Pull Amplifier - Cross Over Distortion - Complimentary Symmetry Push Pull Class B Amplifier - Class C Amplifier - Distortion in Amplifiers - Noise

2. Multi Stage Amplifiers (9 Hrs)

Amplifier Coupling - RC Coupled Two Stage Amplifier - Impedance Coupled Two Stage Amplifier - Transformer Coupled Two Stage Amplifier - Direct Coupled Two Stage Amplifier Using Similar Transistors - Direct Coupled Two Stage Amplifier Using Complimentary Symmetry of Two Transistors - Darlington Pair - Differential Amplifier.

3. Decibels and Frequency Response (3 Hrs)

Decibel System - Frequency Response - Cut off Frequencies - Alpha and Beta
Cut off Frequencies - Gain Bandwidth Product.

4. Feedback Amplifiers (4 Hrs)

Feedback Principle - Types of Feedback - Negative Feedback and its Properties - Forms of Negative Feedback.

5. Field Effect Transistors (7 Hrs)

FET - JFET : Structure, Theory of Operation and Characteristics - JFET Parameters - MOSFET - DE MOSFET and E only MOSFET : Working and Characteristics - FET Applications.

6. Breakdown Devices (6 Hrs)

Unijunction Transistor (UJT) - UJT Relaxation Oscillator - Silicon Controlled Rectifier (SCR) - Triac - Diac - Silicon Controlled Switch.

7. Sinusoidal Oscillators (8 Hrs)

Difference between Amplifier and Oscillator - Classification of Oscillators - Types of Sinusoidal Oscillations - Oscillatory Circuit and its Frequency - Essentials of Transistor LC Oscillator - Barkhausen Criterion for Oscillator - Tuned Base Oscillator - Tuned Collector Oscillator - Hartley Oscillator - Colpitt's Oscillator - Clapp Oscillator - Phase Shift Oscillator - Wien Bridge Oscillator - Crystal Controlled Oscillators.

8. Nonsinusoidal Oscillators (7 Hrs)

Nonsinusoidal Waveforms - Classification of Nonsinusoidal Oscillators - UJT Sawtooth Generator - Multivibrators - Astable Multivibrator - Monostable Multivibrator - Bistable Multivibrator - Schmitt Trigger - Transistor Blocking Oscillator.

Books of Study

1Basic Electronics Solid State – B.L.Theraja, S.Chand & Co.
Ltd. 2Principles of Electronics – V.K.Mehta.

Semester 4 **EL1431 - Electronics IV (54 hours)**

Unit I (Chapters 31 to 35 of Book 1) – 32 hrs

Integrated circuits (8 hrs), Number systems (6 hrs), Logic gates (8 hrs), Boolean algebra (6 hrs), Logic families (4 hrs).

Unit II (Chapters 36, 37, 38 of Book 1) – 22 hrs

Transducers (8 hrs), Electronic instruments (6 hrs), Fibre optics (8 hrs).

Books of Study

1. Basic Electronics Solid State – B.L.Theraja, S.Chand & Co. Ltd.
2. Principles of Electronics – V.K.Mehta.

Semester 1 (Polymer chemistry Main) PY1131.7–Mechanics and fluid dynamics (36 hours)

Unit I (18 hours)

Dynamics of rigid bodies (8 hours)

Theorems of M.I with proof -Calculation of M.I of bodies of regular shapes-

rectangular lamina, uniform bar of rectangular cross section, circular disc, annular ring

solid cylinder, solid sphere- spherical shell, K. E of a rotating body-

Oscillations and waves (10 hours)

Examples of S.H oscillator- oscillations of two particles connected by a spring, vibration state of a diatomic molecule- wave motion-general equation of wave motion-plane progressive harmonic wave - energy density of a plane progressive wave-intensity of wave and spherical waves, superposition principle-

Unit II (18 hours)

Mechanics of solids (8 hours)

Bending of beams-bending moment-cantilever-beam supported at its ends-and loaded in the middle-uniform bending-experimental determination of Y using the above principles with pin and microscope-twisting couple on a cylinder-angle of twist and angle of shear- Torsional rigidity (Qualitative study)

Surface Tension (5hours)

Excess of pressure on a curved surface- force between two plates separated by a thin layer of liquid-experiment with theory to find surface tension of a liquid by

Jaeger' method- temperature dependence of surface tension.

Viscosity (5 hours)

Equation of continuity, Bernoulli's theorems- venturimeter, - Flow of liquid through a pipe -derivation of Poiseuille's formula-limitations – variation of viscosity with temperature-Stokes formula-

Books for study:

1. Mechanics: J. C. Upadhyaya, Ram Prasad & Sons
2. Oscillations & Waves: K. RamaReddy, S. Badami & V.Balasubramaniam (University Press)

Semester 2 (Polymer chemistry Main)

PY1231.7 – Thermal Physics (36 hours)

Unit I – Behaviour of real gases (4 hours)

Joule Thomson effect- Theory and experiment, Phase transition- first order and second order-liquid helium-super fluidity.

Unit II – Transmission of Heat (14hours)

Thermal conductivity and thermometric conductivity-Lee's disc experiment

Weidmann and Franz law (statement only) -Radiation of heat-black body radiation - absorptive power-emissive power-Stefan's law (no derivation) -energy distribution in the spectrum of black body and results-Wien's displacement law -Rayleigh-Jeans law - their failure and Planck's hypothesis-Planck's law-comparison-solar constant, temperature of sun.

Unit III – Thermodynamics (10 hours)

Isothermal and adiabatic processes-work done-isothermal and adiabatic elasticity Heat engines-Carnot's cycle -derivation of efficiency-petrol and diesel engine cycles-efficiency in these two cases-second law of thermodynamics-Kelvin and Clausius statements.

Unit IV – Entropy (8 hours)

Concept of entropy-change of entropy in reversible and irreversible cycles-principle of increase of entropy-entropy and disorder-T-S diagram for Carnot's cycle-second law in terms of entropy-calculation of entropy when ice is converted into steam.

Books for Study:

- 1.The general Properties of matter: F.H.Newman & V.H.L.Searle
- 2.Heat & Thermodynamics: N.Subramaniam & Brijlal, S.Chand & Co
- 3.Heat & Thermodynamics: W.Zemansky, McGraw Hill
- 4.Heat & Thermodynamics: C.L.Arora.

Semester 3 (Polymer chemistry Main)**PY1331.7 – Modern Optics and Electricity (54 hours)****Unit I (18 hours)****Interference (8 hours)**

Analytical treatment of interference-theory of interference fringes and bandwidth. Interference in thin films-reflected system-colour of thin films- Newton's rings-reflected system-measurement of wavelength and refractive index of liquid.

Diffraction (10 hours)

Phenomenon of diffraction- classification-Fresnel and Fraunhofer diffraction Fresnel's theory of approximate rectilinear propagation of light-Fresnel diffraction at a straight edge. Fraunhofer diffraction at a single slit, double slits. Plane transmission grating-determination of wavelength.

Unit II (18 hours)**Polarization (10hrs)**

Experiments showing the transverse nature of light-plane polarized light-polarization by reflection-Brewster's law-double refraction-Nicol prism-propagation of light in uni-axial crystals-positive and negative crystals-principal refractive indices-half wave plate and quarter wave plate-elliptically and circularly polarized light-optical activity-Fresnel's theory and applications.

Laser and Fibre Optics (8 hours)

Principle of operation of laser-population inversion-optical pumping-ruby laser-applications of lasers -Light propagation in optical fibres-step index fibre-graded index fibre-single mode and multi-mode fibres (qualitative ideas only).

Unit III

Electricity (18 hrs)

EMF induced in a coil rotating in a magnetic field-peak, mean, rms and effective values of A.C. Ac circuits-AC through RC, LC, LR and LCR series circuits-resonance-sharpness of resonance-power factor and choke coil-transformers,

Electric motors principle of working Devices working with electric motors – electric fan wet grinder.

Books for Study:

1. A text book of optics – Brijlal & Subramaniam
2. Electricity and Magnetism – R.Murugeshan, S.Chand & Co Ltd.
3. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
4. Electrical Technology (Vol I & II), B.L.Theraja.

Semester 4 (Polymer Science Main)

PY1431.7 – Atomic Physics and Electronics (54 hours)

Unit I

Modern Physics (18 hours)

Basic features of Bohr atom model-Bohr's correspondence principle -vector atom model-various quantum numbers-magnetic moment of orbital electrons -electron spin-Spin-Orbit coupling-Pauli's exclusion principle-periodic table. Atomic nucleus-basic of nucleus -charge, mass, spin magnetic properties moment-binding energy and packing fraction-nuclear forces-salient features-Radioactivity radioactive decay-decay laws-decay constant-half life and mean life-radioactive equilibrium-secular and transient equilibrium-measurement of radioactivity-

Unit II Superconductivity (8 hours)

Properties of superconductors-zero electrical resistance-Meissner effect-critical magnetic field-Type I and Type II superconductors-isotope effect-high temperature ceramic superconductors-applications of superconductors.

Unit III Quantum Mechanics (10 hours)

Inadequacies of classical physics-experimental evidences-evidences for quantum

theory-Planck's hypothesis-foundation of quantum mechanics-wave function and probability density-Schrödinger equation-time dependent and time independent-particle in a potential box.

Unit III (18 hours)

Electronics (18hours)

Current-voltage characteristics of a diode-forward and reverse bias-breakdown

mechanism of p -n junction diode-Zener diode and its characteristics-half wave and full wave rectifiers-bridge rectifier-ripple factor, efficiency. Construction and operation of a bipolar junction transistor-transistor configurations-current components-transistor characteristics-DC load line-Q point-AC load line-transistor biasing-need for biasing-bias stabilization-biasing circuits-fixed bias, emitter feedback bias, voltage divider bias (qualitative study only).

Transistor amplifier-basic features of an amplifier-gain, input and output resistances-frequency response and band width-small signal CE amplifier-circuit and its operation

Books for Study:

1. Modern Physics – R.Murugesan, S.Chand & Co. Ltd.
2. A text book of B.Sc subsidiary Physics – P.Vivekanandan.
3. Principles of Electronics – V.K.Mehta.

COMPLEMENTARY PRACTICAL (PHYSICS)

(Common for all complementary subjects)

PY1432-Practical

List of Experiments (Minimum 18 experiments to be done)

1. Torsion Pendulum- n by torsional oscillations
2. Torsion Pendulum- n and I using equal masses
3. Fly Wheel
4. Cantilever- Y by pin and microscope method
5. Uniform bending- Y by pin and microscope
6. Symmetric bar pendulum - g and radius of gyration
7. Surface tension- capillary rise method
8. Coefficient of viscosity- capillary flow method
9. Specific heat-method of mixtures applying Barton's correction

10. Lee's disc- Thermal conductivity of cardboard
11. Melde's string- frequency of tuning fork
12. Method of parallax- optical constants of convex lens using
 - i) mirror and mercury ii) mirror and water
- 13 Method of parallax- refractive index of liquid.
14. Spectrometer- A, D and n
15. Spectrometer- dispersive power of a prism
16. Spectrometer- Grating-normal incidence
17. Deflection and vibration magnetometer- M and Bh
18. Circular coil- magnetization of a magnet
19. Carey Foster's bridge - Resistivity
20. Potentiometer- Resistivity
21. Potentiometer- Calibration of ammeter
22. Mirror galvanometer- Current and Voltage sensitivity
23. Diode Characteristics (for Ge and Si diodes)
24. Half wave rectifier-Measurement of ripple factor with and without filter capacitor
25. Full wave rectifier- Measurement of ripple factor with and without filter capacitor

COMPLEMENTARY ELECTRONICS PRACTICAL

EL1432-Practical

List of Experiments (Minimum 18 experiments to be done)

1. Semiconductor diode (IN 4001/ IN 4007) characteristics; To (i) trace and construct the circuit,
(ii) to draw the forward V-I characteristic curve and
(iii) to determine the static and dynamic resistances of the diode at a particular operating point.
2. Zener diode characteristics: To (i) trace and construct the circuit, (ii) to plot the V-I characteristic under reverse biased condition and (iii) to calculate the dynamic resistance of the diode under reverse bias when conducting.
3. LED and photo diode characteristics: To (i) study the variations in resistance with varying current and (ii) to study the output characteristics of a photo diode.
4. Thevenin and Norton equivalent circuits: To (i) determine Thevenin's and Norton's equivalent circuits of Wheatstone's bridge and (ii) to verify the power transfer theorem.
5. R-C resonant circuits: To (i) study the input-output characteristics of an R -C circuit as a function of frequency and (ii) to study the square wave response of R-C circuits.
6. Transistor characteristics; CE configuration: (i) Construct the circuit, (ii) To plot the input characteristics (IB-VBE graph for constant V CE) and to calculate the dynamic resistance at an operating point, (iii) To study the output characteristics (IC-VCE graph for constant I B) and to calculate the output ac resistance, dc gain and ac current gain at a given operating point.
7. Transistor characteristics; CB configuration: (i) Construct the circuit, (ii) Plot the input characteristics (IE-VEB graph for constant VCB) and to calculate the dynamic resistance at an operating point, (iii) To study the output characteristics (IC-VCB graph for constant I C) and to calculate the output dynamic resistance, dc current gain and ac current gain at a given operating point.
8. FET characteristics: (i) Trace the circuit (ii) To plot the static drain characteristics of FET (iii) To calculate the FET parameters (drain dynamic resistance, mutual conductance and amplification factor at a given operating point).
9. Fixed-bias circuit with and without emitter resistor: (i) Trace the circuit (ii) To measure the Q-Point (IC and VCE) with and without emitter resistor RE. (iii) To note the variation of Q-point by increasing the temperature of the transistor in fixed bias circuit with and without emitter resistor (iv) To note the variation of Q-point by changing the base resistor in bias circuit with and without emitter resistor

10. Collector-to-base feedback bias circuit: (i) Trace the circuit (ii) To measure the Q-Point (IC and VCE) (iii) To note the variation of Q-point by increasing the temperature of the transistor

11. Potential -divider biasing circuit: (i) Trace the circuit (ii) To measure the Q-Point (IC and VCE) (iii) To note the variation of Q-point by increasing the temperature of the transistor (iv) To measure the operating point when one of the bias resistor changes

12. Half-wave rectifier: (i) To draw the input and output wave shapes (ii) To verify $V_{dc} = V_m/p$ and ripple factor = 1.21 (Observe for different load resistances)

13. Full-wave rectifier – Centre tapped: (i) To draw the input and output wave shapes (ii) To verify $V_{dc} = 2V_m/p$ and ripple factor = 0.482 (Observe for different load resistances)

14. Bridge rectifier: (i) To draw the input and output wave shapes (ii) To verify $V_{dc} = 2V_m/p$ and ripple factor = 0.482 (Observe for different load resistances)

15. Filter circuits (shunt capacitor, LC and CLC filters): (i) To plot the output wave shapes with and without shunt capacitor (ii) To find the ripple factor with and without different filters

16. Single stage RC coupled amplifier: (i) To measure the Q-point (IC and VCE) (ii) To measure the maximum signal that can be amplified by the amplifier without clipping (iii) To measure the voltage gain at 1 KHz (iv) To plot the frequency response (v) To find the voltage gain for different values of load resistance

17. FET amplifier: (i) To measure the frequency response (ii) To measure voltage gain, BW and gain-BW product

18. Hartley oscillator: (i) Trace the circuit (ii) To measure the Q-point of the transistor (iii) To observe the output wave form and to measure the frequency of oscillations

19. Phase shift oscillator: (i) Trace the circuit (ii) To measure the frequency from the output wave form (iii) To observe the phase shift at different points

20. Clipping circuits: (i) To observe the output wave form corresponding to different clipping circuits

21. Clamping circuits: (i) To observe the output wave form corresponding to different clamping circuits

22. OP amp. - Inverting amplifier using IC 741 (i) Trace the circuit (ii) To construct an inverting amplifier using IC 741 and determine its voltage gain for different input voltage

23. OP amp. - Non inverting amplifier using IC 741 (i) Trace the circuit (ii) To construct a Non inverting amplifier using IC 741 and determine its voltage gain for different input voltage

24. OP amp. - Unity gain buffer using IC 741 (i) Trace the circuit and (ii) To construct a unity gain buffer using IC 741 and to find the voltage gain.

B.Sc. Physics and Computer Application (2021 onwards)

SCHEME

Sem	Course Code	Course	No. of hrs/we ek	No. of credits	Hrs. /sem.	CE	ESE
1	PC1171	Computer Fundamentals and Organization	3	3	54	20%	80%
2	PC1221	Programming in C	3	2	54	20%	80%
2	PC1271	C Programming Lab	S1 – 2 S2 – 2	3	S1 – 36 S2 – 36	20%	80%
3	PC1371	Microprocessors	3	3	54	20%	80%
3	PC1372	Data Structures	3	3	54	20%	80%
4	PC1471	Software Engineering	3	3	54	20%	80%
4	PC1472	Python Programming	2	2	36	20%	80%
4	PC1473	Python Programming Lab	S3 – 2 S4 – 2	4	S1 – 36 S2 – 36	20%	80%
5	PC1571	Data Base Management System	3	3	54	20%	80%
5	PC1581.A PC1581.B PC1581.C	<u>Open Course</u> A. Digital Marketing B. Internet and WWW C. Impact of Social Media Networks	3	2	54	20%	80%
5	PC1572	PHP and MySQL Lab	7	4	136	20%	80%
6	PC1671	Computer Networks and Security	4	4	72	20%	80%
6	PC1672	Operating System	3	3	54	20%	80%
6	PC1673	Major Project	5	4	90	20%	80%

Division of Marks (Lab Examination)

1. First program should be sufficiently simple (From Part A) – **25 marks**
(Logic – 10 marks, Successful compilation – 10 marks, Result – 5 marks)
2. Second Program should be based on advanced concepts (From Part B) – **30 marks**
(Logic – 15 marks, Successful compilation – 10 marks, result – 5 marks)
3. Viva Voce – **15 marks**
4. Lab Record – **10 marks**

Total Marks – **80 marks**

PC1171: COMPUTER FUNDAMENTALS AND ORGANIZATION

1. COURSE OUTCOMES

At the end of the course, the student will be able to:

CO1: Remember the basic concepts of computers.
CO2: Understand the functional knowledge about PC hardware, operations and concepts.
CO3: Understand the functional units of a standard PC and it's working.
CO4: Understand the memory organization in a computer.

2. SYLLABUS

Module I: Characteristics of Computer; Von Neumann model; Inside a Computer: SMPS, Motherboard, BIOS, CMOS, Ports and Interfaces, Expansion Cards, Ribbon Cables, ASCII; Types of Input Devices, Types of Output Devices.

Module II: Memory Representation, Hierarchy, Memory Units: RAM (SRAM, DRAM); ROM; Secondary Storage Devices: Magnetic Tape, Magnetic Disk, Types of Magnetic Disks, Optical Disk, Types of Optical Disks; USB: Pen drive, External Hard Disk; Memory Stick; CPU Registers, Cache Memory, Operations in Cache memory, hit ratio; Virtual Memory.

Module III: Instruction Format; Instruction Cycle: Fetch Cycle, Execution Cycle; Instruction Set: CISC Architecture, RISC Architecture, Comparison; Memory Chips; Pipelining and Parallel Processing; Microprogrammed Control and Hardwired Control.

Module IV: Input/Output Organization: Asynchronous Data Transfer, Programmed I/O (concepts only); Interrupts: Types of interrupts, processing interrupts, interrupt hardware and priority, DMA: DMA Controller, DMA Transfer Modes; I/O Processor.

3. REFERENCES

3.1 Core

- Introduction to Information Technology, 2nd Edition, ITL Education Solutions Limited, Pearson
- John D. Carpinelli, Computer systems Organization & Architecture, Pearson Education

3.2 Additional

- E. Balaguruswamy, Fundamentals of Computers, McGraw Hill, 2014
- Carl Hamacher, Vranesic Zaky, Computer Organization 4th Edition, McGraw Hill

3.3 Assignments and Activities

Applications of Computers in various fields, - Pioneers in IT, - IT Policy, IT and Development, - IT in India (major initiatives, key institutions, statistics), IT in Kerala (major

initiatives, key institutions, statistics), - Careers in IT, - Computer faults: hardware & software, - types of faults, - diagnostic programs and tools, - printer problems, - monitor problems, problem diagnosis, organization of a modern PC.

PC1221: PROGRAMMING IN C

1. COURSE OUTCOMES

At the end of the course, the student will be able to:

CO1	Remember the basics of computer
CO2	Understand the structure of program writing
CO3	Apply control structures and pointers
CO4	Analyze user defined functions
CO5	Evaluate dynamic memory allocation
CO6	Create string handling functions

2. SYLLABUS

Module I: Introduction to programming: Algorithm & Flow charts: Definitions, Symbols used to draw flowcharts, Program Writing — Structure of the Program, Source code, Object code, Executable file, Variables and Constants, Rules for naming the Variables/Identifiers; Basic data types of C, int, char, float, double; storage capacity — range of all the data types;

Module II: Basic Elements: Operators and Expressions: Expression Evaluation (Precedence of Operators); simple I/O statements, Control structures, if, if else, switch-case, for, while, do-while, break, continue. Arrays: Defining simple arrays, Multi-dimensional arrays, declaration, initialization and processing.

Module III: Functions & Pointers: concept of modular programming, Library, User defined functions, declaration, definition & scope, recursion, Pointers: The & and * Operators, pointer declaration, assignment and arithmetic, visualizing pointers, call by value; call by reference, dynamic memory allocation. Storage classes.

Module IV: Advanced features: Array & pointer relationship, pointer to arrays, array of pointers. Strings: String handling functions; Structures and unions; File handling: text and binary files, file operations, Functions for file handling, Modes of files

3. REFERENCES

3.1 Core

- Ashok N. Kamthane, *Programming in C*, Pearson Education, Second edition

3.2 Additional

- E. Balaguruswamy, *Programming in ANSI C*, McGrawhill, Sixth Edition

3.3 Assignments and Activities

Pre-processor directives- #include, #define, macros with arguments, the operators # and ##, conditional compilations, multiple file programming, - creating header files, program

verification, algorithm efficiency analysis; int86 functions and graphic functions.

PC1271: C PROGRAMMING LAB

Part A

The C laboratory work will consist of 20-25 Experiments

- 1-15. Testing out and interpreting a variety of simple programs to demonstrate the syntax and use of the following features of the language: basic data types, operators and control structures.

Part B

16. 1-D Arrays: A variety of programs to declare, initialise, read, print and process 1-D arrays of various basic data types. Processing to include, selection, sum, counting, selective sum, selective counting, reversing etc.
17. Pointers: A large number of trivial programs involving all possible data types to familiarize the syntax of pointers in a variety of situations and to draw memory diagrams based on the observations.
18. Structures: A variety of programs to declare, initialise, read, print and process structures made up of a variety of data types and structures.
19. 2-D Arrays: A variety of programs to declare, initialise, read, print and process 2-D arrays of various basic data types. Processing to include, selection, sum, counting, selective sum, selective counting, reversing etc.
20. Array of Structures and Structure of Arrays: Programs to demonstrate declaration and processing of structure of arrays and array of structures.
21. Pointers to Arrays: A number of programs to demonstrate handling of 1-D and 2-D arrays using pointers and to draw memory diagrams based on the observations.
22. Pointers to Structures: A number of programs to demonstrate use of pointers to structures and to draw memory diagrams based on the observations.
23. Functions –I: Simple Examples of declaring and using functions of the following categories (i)no argument, no return, (ii) argument, no return, (iii) no argument, return, (iv) argument, return, all pass by value
24. -Functions –II: Declaring and using functions with pass by reference, Passing and Returning structures, Recursive functions.
25. Files: Simple Example involving use of multiple files: declaring, opening, closing, reading from and writing to text files.

PC1371: MICROPROCESSORS

1. COURSE OUTCOMES

At the end of the course, the student will be able to:

CO1: Remember the basic concepts of computers.
CO2: Understand the functional units of a standard PC and its working.
CO3: Understand the architectural features of 8086 processor.
CO4: Create assembly language programs for 8086 processor.
CO5: Apply the tools debug, TASM/ MASM.

2. SYLLABUS

Module 1: Microprocessor Literature, Evolution of microprocessor, Basic functional blocks of a microprocessor, Microprocessor based systems, Concept of multiplexing; Intel 8086 Pins, Signals and architecture: Introduction, pins and signals, architecture, instruction and data flow,

even and odd memory banks, bus cycles and timing diagram

Module 2: Instruction set of 8086: Instruction format, addressing modes, execution time, affecting flags, Data transfer, arithmetic, logical, string manipulation, control transfer and processor control instructions; Interrupts: Its need, classification, sources, interrupts of 8086, Implementing interrupt scheme, INTR and its expansion, Programmable Interrupt Controller,

Module 3: Assembly language programming: Program development tools, variables and constants used in assemblers, assembler directives, Procedure and macros, Interrupts of personal computers, Hand coding of assembly language programs, examples

Module 4: 80X86 family of processors: Introduction, 80186, 80286, 80386, 80486, Pentium, Advanced Pentium processors

3. REFERENCES

3.1 Core

- A Nagoor Kani, 8086 Microprocessor and its applications, McGrawhill, Second edition

3.2 Additional

- N. Madhivanan, Microprocessors, PC Hardware and Interfacing, PHI Edition
- R S Gaonkar, Microprocessor Architecture, Programming and Applications with 8086, Wiley Eastern Edition

3.3 Assignments and Activities

Miscellaneous Topics: Features of core2, dual core and I series processors, RISC, CISC, Motherboard of IBM PC, Drives, Peripherals, I/O buses, Parallel, Serial and USB ports.

PC1372: DATA STRUCTURES

1. COURSE OUTCOMES: At the end of the Course, the student will be able to

CO1	Remember purpose of Data Structures
CO2	Understand different Data Structures
CO3	Apply programming languages
CO4	Analyze working of different data structures
CO5	Evaluate expressions
CO6	Create different Data Structures

2. SYLLABUS

Module I: Introduction: Concept of Data Structures, Types of Data Structures, Linear versus Non-Linear Data Structures, Data Structure Operations. **Array:** Linear Array-Memory representation,

insertion and deletion operation, Multidimensional Arrays-memory representation, Sparse Matrices. **Linked List:** Concept of Linked List, Memory representation, Single Linked List - Traversing, Searching, Insertion, Deletion, Circular Header Linked List, Doubly Linked List - Insertion, Deletion, Difference of Linked List and Array.

Module II: Stack: Representation and operations on Stack using arrays and linked list, application of Stack - Polish Notation- Conversions to Infix, postfix and prefix notations, Infix to postfix conversion using stack, Evaluation of postfix expression using stack **Queue:** Implementation and operations on Queue using arrays and linked list, Deque- Types Input and output restricted, Priority Queues-Array and Linked list representation

Module III: Trees: Concept of Trees, Tree terminologies, **Binary tree:** Complete and Extended Binary tree, Expression trees, Representation of Binary Tree, Traversing Binary Trees – Preorder, Inorder, Postorder. **Binary Search Tree (BST):** Search, Insertion and Deletion operations, creating a Binary Search Tree. **Graph:** Concept of Graph, Graph terminologies, Graph Traversal – BFS, DFS.

Module IV: Sorting: Bubble Sort, Selection Sort, and Insertion Sort. **Searching:** Sequential searching, Binary searching. Hashing- hash table, types of hash functions, Collision Resolution Techniques-linear probing, quadratic probing, double hashing, chaining.

3. REFERENCES

3.1 Core

- Seymour Lipschutz, Data Structures, Schaum's outline Series. The McGraw Hill
- S. K Srivastava, Deepali Srivastava. Data Structures Through C in Depth. BPB Publications. Second Revised & Updated Edition.

3.2 Additional

- K Sharma. Data Structures using C. Pearson, Second Edition.
- Ashok N. Kamthane, Introduction to Data Structures in C, Pearson

3.3 Assignment and Activities

Recursion, B Tree, Huffman Tree.

PC1471: SOFTWARE ENGINEERING

1. COURSE OUTCOMES

At the end of the course, the students should be able to:

CO1	Understand the importance of having a process for software development.
CO2	Familiarize with various software testing techniques and tools.
CO3	Apply various models in the software development projects.
CO4	Analyze the process of software development

2. SYLLABUS

Module I: Introduction: Evolution, Software Development Projects-Program versus product, Types of Software Development Projects Software life cycle models: A few basic concepts, Waterfall model

and its extensions, Rapid Application Development (RAD), Agile development models, Spiral model, Comparison of different life cycle models

Module II: Software Project Management, Project Planning, Metrics for project size estimations, Project Estimation Techniques, Basic COCOMO model, Scheduling-Work break down structure, Activity Network, Basic concepts of CPM, PERT and Gantt Chart. Software Requirements Analysis and Specification: Requirements gathering and analysis, Software Requirements Specification.

Module III: Software Design: overview of the design process, How to characterize a good software design, Cohesion and Coupling, Approaches to software design, Function oriented design: Overview of SA/SD Methodology, Structured analysis, Developing the DFD model of a system, Structured Design, Object modelling Using UML, Unified Modelling Language (UML), UML diagrams-Class, Interaction, Activity and State chart diagram.

Module IV: Coding and Testing: Coding, Code review, Testing, Unit testing, Black box testing, white box testing: Basic concepts, Debugging, Integration testing, system testing, Software Reliability and quality management: Software reliability, Software maintenance: Characteristics of software maintenance, Software reverse engineering, Emerging Trends: Client Server Software, Client Server architectures, CORBA, Service Oriented Architectures (SOA), Software as a Service.

3. REFERENCES

3.1 Core

- Rajib Mall, Fundamentals of Software Engineering, Fifth Edition, PHI

3.2 Additional

- Pankaj Jalote, An Integrated Approach to Software Engineering, Narosa Publishing House
- Software Engineering - A practitioner's approach (Sixth Edition), Roger S Pressman- McGraw Hill Companies, Inc

3.3 Assignments and Activities

Preparing various documents, case studies, preparing test plans, UML diagrams, Metrics for various development phases, Agile Programming Methodologies, extreme Programming, Formal Methods, CASE Tools

PC1472: PYTHON PROGRAMMING

1. COURSE OUTCOMES: At the end of the course, the student will be able to

CO1	Remember the concepts of python programming
CO2	Understand data types and differences
CO3	Apply CGI programming
CO4	Analyze the concepts of database programming in python
CO5	Evaluate the usage of Python package installer PIP
CO6	Create programs using libraries such as Flask, SQLAlchemy, Pandas, numpy etc..

2. SYLLABUS

Module I: Introduction to Python - Features of Python, Identifiers, Reserved Keywords, Variables, Comments in Python, Input, Output and Import Functions, Operators; Data Types and Operations -

int, float, complex, Strings, List, Tuple, Set, Dictionary, Mutable and Immutable Objects, Data Type Conversion; Flow control - Decision Making, Loops-for, range () while, break, continue, pass;

Module II: Functions- Definition, calling, arguments, anonymous function, recursion, return; Modules & Packages - Built-in Modules, Creating Modules, import statement, Locating, modules, Namespaces and Scope, dir (), reload (), Packages in Python; File Handling- open, close, write, read, methods, rename, delete, directories;

Module III: Object oriented programming- class, object, method, attribute, destructor, encapsulation, data hiding; Exception handling- built in exceptions, Handling, Exception with arguments, Raising and User defined exceptions, Assertions in Python; Regular expressions – match, search, replace, patterns.

Module IV: Database Programming- Connection, Create, insert, update, delete, commit, rollback, disconnection, exceptions; Iterators- Data type supports iterators; CGI Programming- HTTP Header, Env variables, Forms, Radio button, Dropdown box, check box, text area, cookies, uploading file.

3. REFERENCES

3.1 Core

- Jeeva Jose, “Taming PYTHON By Programming”, Khanna Publications, 2017

3.2 Additional

- Allen B. Downey, “Think Python- How to think like a computer scientist”, Second Edition, O’Reilly, 2016.
- Paul Gries, Jennifer Campbell and Jason Montojo, “Practical Programming: An Introduction to Computer Science using Python 3”, Second edition, Pragmatic Programmers, LLC, 2013.

PC1473: PYTHON PROGRAMMING LAB

The laboratory work will consist of 10-15 Experiments

Part A

- To write, test, and debug simple Python programs.
- To implement Python programs with conditionals and loops. (square root, gcd, exponentiation, sum of an array of numbers, linear search, binary search, bubble sort, insertion sort, selection sort etc.)
- Use functions for structuring Python programs.
- Represent compound data using Python lists, tuples, dictionaries.

Part B

- Read and write data from/to files in Python.
- Programs to demonstrate creating and handling of modules and packages
- Programs involving a variety of Exception Handling situations
- Programs involving Database manipulation
- CGI programming

PC1571: DATABASE MANAGEMENT SYSTEMS

1. COURSE OUTCOMES

At the end of the Course, the student will be able to:

CO1	Understand the concept of database.
CO2	Develop skills to design an ER diagram.
CO3	Create database using SQL and perform operations in SQL.
CO4	Familiarize the management of concurrent transactions.
CO5	Apply the design concepts and normalization in database easily.

2. SYLLABUS

Module 1: Introduction: Database system applications, Purpose of database systems, View of data, Database languages, Database design, Database and application architecture. Data models: Hierarchical model, Network model, Entity Relationship model, Object oriented data model, Relational model. **Introduction to relational model:** Structure of relational database, Database schema, Keys, Relational algebra and calculus.

Module 2: Database design using ER model: Overview of the design process, Entity relational model, Complex attribute, Mapping cardinalities, Primary key, removing redundant attributes in entity sets, Reducing ER diagram to relational schema, Entity relationship design issues. Relational database design: Features of good relational design, Decomposition using Functional Dependencies, Normal forms (1NF, 2NF,3NF,BCNF,4NF)

Module 3: Introduction to SQL: Overview of the SQL query language, SQL data definition, Basic structure of SQL queries, Additional basic operations, Set operations, Null values, Aggregate functions, Nested subqueries, Modification of the database, Intermediate SQL: Join expressions, Views, Integrity constraints, Authorization.

Module 4: Transactions: Transaction concept, A simple transaction model, ACID property, Serializability, Concurrency control: Lock based protocol, Deadlock handling, Multiple granularity, insert operations, delete operations and predicate Reads, Timestamp based protocols, Validation based protocols. Basic security issues: The need for security, Physical and Logical security, Design issues, Maintenance issues, Operating system issues and availability, Accountability.

3. REFERENCES

3.1 Core

- Avi Silberschatz, Henry F. Korth, S. Sudarshan, Database System Concepts, Seventh Edition.

3.2 Additional

- Ramon A. Mata-Toledo and Pauline K. Cushman, Database Management Systems, MC Graw Hill Education.
- Atul Kahate, Introduction to Database Management Systems.

OPEN COURSES

PC1581.A DIGITAL MARKETING

1. COURSE OUTCOMES

At the end of the Course, the student will be able to:

CO1	Remember Digital marketing function in organizations
CO2	Understand different modes of payments
CO3	Analyze security and legal issues in digital marketing
CO4	Understand social media marketing

2. SYLLABUS

Module I: Introduction: Nature, Scope and Importance of Digital Marketing; Evolution of Digital Marketing; Core Concepts-Inbound Marketing, Content Marketing, Email Marketing, Influential Marketing; Holistic Digital Marketing Concept, 10Ps of digital marketing; Digital Marketing Environment: Macro and Micro Environment.

Module II: E-banking: approaches, devices, services, benefits, drawbacks, Electronic payment systems-credit cards, debit cards, smart cards, credit accounts, cyber security, encryption, secret key cryptography, public key cryptography, digital signatures, firewalls

Module III: Digital Marketing: Search Engine Optimization (SEO), Social Media, Content Marketing; Email Marketing, Mobile Marketing. Challenges for Digital Marketing: Increased Security Risk, Cluttered Market, Less Focus on Keywords, More Ad Blockers, Increased Ad Costs.

Module IV: Digital Marketing: Pay per Click-Search Engine Advertising, Advantages, Factors, Conversion Rate Optimization (CRO); Digital Marketing- Web Analytic. Social Media Marketing: Face book, Pinterest, Twitter, LinkedIn, YouTube, Google Adwords, Google Analytics; Issues and Future enhancement of Digital Marketing.

3. REFERENCES

3.1 Core

- Ian Dodson-*The art of Digital Marketing*, Wiley

3.2 Additional

- Puneet Singh Bhatia- *Fundamentals of Digital Marketing*, Pearson Education

3.3 Assignments and activities

Collection of current marketing tools, case studies, new trends.

PC1581.B INTERNET AND WWW

1. COURSE OUTCOME

At the end of the Course, the student will be able to:

CO1	To understand the basic concepts of Networks.
CO2	To learn the working of Internet.

CO3	To analyse different search engines and its working
CO4	To familiarise Network Protocols and WWW.

2. SYLLABUS

Module I: Introduction to Network-Types of Network-Network Topologies, Basic communication technology, Intranet, Extranet-Advantages, Internet-History, Modes of Connecting to Internet-Dialup Access-Direct to dedicated connections, Internet Service Providers, Domain Name Service, Internet Addresses-Addressing Scheme-IPV6, Modems, Routers, Network cards Communication Software, Internet Tool-File Transfer Protocols, Search Tools, Telnet.

Module II: Introduction to WWW-WWW and HTTP, Webpage, Introduction to Web Browser-Book Marks-Comparison, Directories, Search Engines-Working and features-Search Strategies – Search Generalization-Search Specialization-Working.

Module III: Uniform Resource Locator (URL), OSI reference model, Introduction to TCP/IP-TCP/IP Model, Email-Working with Email-Sending Mail-Reading Mail-Replying to Mail-Deleting Mail-Advantages and Disadvantages of Email, Basics of Chat Rooms, SMTP.

Module IV: Introduction to Web Server-Personal Web Server (PWS)-Internet Information Server (IIS)-Apache Webserver-Benefits of Web Server, Introduction to Security-Internet Security-Identifying Network Stations, Network Protocols-Internet Security Threats.

3. REFERENCES

3.1 Core

- Dr.SurenderJangra, “Basics of Internet and Web”, Vayu Education of India. New Delhi 110002

3.2 Additional

- Raymond Greenlaw, Ellen Hepp“Fundamentals of Internet and the World Wide Web, McGraw-Hill.

PC1581.C IMPACT OF SOCIAL MEDIA NETWORKS

COURSE OUTCOME

At the end of the Course, the student will be able to:

CO1	To understand the types of social media networks and its uses.
CO2	To learn the impact of social media on society & commerce
CO3	To analyse the impact of social media on work, training & development and on relationships
CO4	To familiarize challenges of social media in terms of privacy, security & health

2. SYLLABUS

Module I: Introduction to Social Media networks: Types of Social Media- Uses of Social Media Networks-Popular Social Media Websites-Mobile social media- Types of Users- Growth of social media networks

Impact of Social Media on Society: Sharing of Information and its Need – Entertainment – Communication Tool -Influence-Social media activism-societal issues- social cause- Impacts on Politics-Pros and Cons-Positive and negative effects of Social media on Society.

Module II: Impact of Social Media on Commerce: Social media Marketing-Promotion of Business-Digital Marketing & SMM -Advantages to Business-Knowledge sharing and Collaborative Work Management-Customer Benefits-Impacts-pros and cons.

Impact of Social Media on the World of Work: Job Recruitment and Hiring-Benefits- Researching Job Candidates-Impact of professional social media networks.

Module III: Impact of Social Media on the Training & Development: Social media in Learning-Online-Long Distance Learning-Impact of Blogs, Wikis, LinkedIn, Twitter, Facebook and Podcast- Privacy and Frauds.

Impact of Social Media on relationship: Bonding and Friendships –Pros and Cons- Issues Arising-Impact of Social Media on Kids, Teens & Youth.

Module IV: Challenges of Social Media- Criticism on Social Media-Cyberbullying-Lack of Privacy-Security Issues. Addictions to Social media – Games- Impact on Education: Positive and negative effects- Impact on Physical and Mental Health-Emotional Insecurities- Depression-Anxiety-Behavioural Issues-Wastage of Time etc. Future of Social Media Networks.

3. REFERENCES

3.1 Core

- Hana S.Noor Al-Deen,John Allen Hendricks, “Social Media-Usage & Impact”, Rowman&Littlefield Publishing Group

3.2 Additional

- Dedria Bryfonski, ”The Global Impact of Social Media”-Greenhaven Press
- Dr.Sanjay Singh Baghel,Dr Uma s singh,’Social Media and Indian Youth” Apple Books Publishers

PC1572: PHP and MySQL LAB

The laboratory work will consist of 15 -20

Part A (PHP)

- Setup of WAMP/XAMPP server or Setup Apache MySQL and PHP
- Write a PHP program to generate a random number between 1 and 100.
- Modify above program to accept range of the random number from HTML interface.
- Programs involving various control structures like if, else, elseif/else if, Alternative Syntax for 'if, else, elseif/else if
- Programs involving various control structures like while, do-while, for, foreach, switch, break, continue. Try alternative syntax for while, do-while, for, foreach, and switch.
- Programs involving the declaration, return, require, include, require- once, include once and goto.
- Programs to demonstrate PHP Array functions, PHP Array Sorting, PHP Key Sorting, PHP Value Sorting, PHP Multi Array Sorting, PHP Array Random Sorting,
- Programs to demonstrate PHP Array functions. PHP Array Reverse Sorting, Array to String Conversion, String to Array, Array Count, Remove Duplicate Values
- Programs to demonstrate PHP Array functions. array Search, Array Replace, Array Replace

Recursive, Array Sub String Search

- Demonstrate the use of regular expression to compare two strings.
- Extract Domain name from URL
- Find the number of rows from a MYSQL database for your query.
- Generate a Guestbook which will allow your website visitor to enter some simple data about your website.
- Develop a PHP program for Email Registration.
- Develop a project for making Application form and performing Degree Admission On-line.

Part B (MySQL)

- Create Database, create table, insert, update, delete and select queries
- Program to connect PHP and MySQL

PC1671: COMPUTER NETWORKS AND SECURITY

1. COURSE OUTCOMES

At the end of the Course, the student will be able to

CO1	Remember various network technologies, design issues and characteristics
CO2	Understand the purpose of computer networks and the basic issues in information security
CO3	Apply the use of layer architecture for networking systems, information security measures
CO4	Analyze the concept of different models of network and the working of various ciphers
CO5	Evaluate data link controls and Information Security policies
CO6	Create awareness on different networking protocols and information security policies

2. SYLLABUS

Module I: Network Introduction: - Use of computer networks-applications, network topologies, Network hardware-LAN, WAN, MAN, VPN, PAN, broadcast, point-to-point, Network software-connection-oriented, connectionless, protocol hierarchies, Reference model- OSI, TCP/IP-. Internet, mobile phone network, wireless LAN, RFID and sensor networks. Guided transmission media, Wireless transmission, Satellite, Data communication: -Data flow, data transmission mode-simplex, half duplex, full duplex. Bandwidth- bit rate, baud rate, multiplexing-FDM, TDM, WDM. Switching - circuit, packet, message. Mobile system -1G, 2G, 3G, GSM

Module II: Data link and Access controls: Framing, error control, flow control- feedback-based, rate-based, Error detection and correction- hamming code, parity, checksum, CRC, Stop and wait protocol, sliding window protocol, ALOHA, pure, slotted, CSMA, CSMA/CD. LAN transmission equipment- Network Interface card (NIC), repeaters, hubs, bridges, routers, switches, gateways, Internetworking-Datagram, routing algorithm- adaptive, non-adaptive, static, dynamic, distance vector, link state, Dijikstra algorithm (shortest path), Internet protocol (IP)- services, IP address, TCP, UDP. Network applications- client-server model, DNS, Remote login, FTP, email-SMTP, MIME

Module III: Information Security: Computer Security- objectives, security attacks, services, network security model, network security terminologies, Cryptography: Symmetric cipher model, cryptanalysis and Brute force attack, Classical Encryption Techniques, substitution, transposition techniques, Steganography, Feistel

cipher, Data Encryption Standard (DES)-strength , Public-key cryptosystem- RSA algorithm-working Authentication: cryptographic hash function, message digest, message authentication code, authentication methods, Digital signature:- model, Digital Signature Standard(DSS)-approach, Digital Signature Algorithm (DSA)-working.

Module IV: Web Security: threats, Secure Socket Layer (SSL)- architecture- session and connection, E-Mail security: - PGP, MIME, S/MIME, IP Security: - benefits, IPsec services-transport and tunnel mode, IPv4 and IPv6- comparison. System Security: malicious software-Virus-types, worms, Trojans, Spyware, Firewall-types, characteristics and benefits. Security and Law: - Regulations in India- IT Act 2000/2008, Cyber Crime- cyber law, Indian Copyright Act, Indian Contract Act, Consumer Protection Act, Future Trends –The Law of Convergence.

3. REFERENCES

3.1 Core

- Andrew S. Tanenbaum, “*Computer Networks*”, Fourth/Fifth edition, Pearson
- Brijendra Singh, “*Data Communication and Computer Networks*”, Fourth edition, PHI
- William Stallings, “*Cryptography and Network Security: Principles and Practice*”, Fifth edition Pearson

3.2 Additional

- Behrouz A Forouzan, “*Data Communication and Computer networks*”, Fourth edition, McGraw Hill
- Achyut S Godbole, “*Data communications and networks*”, Second edition McGrawHill
- V K Pachghare, “*Cryptography and Information Security*”, Third edition, PHI
- Atul Kahate, “*Cryptography and Network Security*”, Mc Graw Hill
- Mohammad Amjad, “*Cryptography and Network Security*”, Paperback

3.3 Assignment and Activities

Peer-to-peer networking, Measurement and packet analysis, blue tooth, emerging topics, networking in LINUX AES, Blowfish algorithms, Kerberos, Comparison of PGP and/ SMIME., Trusted systems.

PC1672: OPERATING SYSTEMS

1. COURSE OUTCOMES

At the end of the Course, the student will be able to

CO1	Understand working of various Operating Systems
CO2	Apply constrained resource allocation, process scheduling and memory management techniques
CO3	Evaluate synchronization of processes and protection of an Operating System
CO4	Analyse salient features available to various Operating Systems

2. SYLLABUS

Module I: Operating System Overview: Introduction - Structure of Operating System, the Evolution of Operating System, Operating System Functions, System calls. Distributed Systems: introduction, Trends in Distributed System, challenges.

Module II: Process Management: The Process, Process State, PCB, Threads, Process Scheduling - Basic Concepts, Scheduling Criteria, Scheduling Algorithms. Process Coordination: Critical Section problems, Semaphores, Synchronization - Interprocess Communication Problems. Deadlock – Definition, Resource Allocation Graph, Conditions of deadlock, deadlock prevention, deadlock avoidance, deadlock detection, deadlock recovery.

Module III: Memory Management: Basic Hardware, Address binding, Logical vs. physical address space, Dynamic Loading and Linking, Swapping, Memory Allocation Methods, Paging, Structure of Page Table, Segmentation, Virtual Memory- Background Demand Paging, Page Replacement- Basic Page Replacement, FIFO Page Replacement, Optimal Page Replacement, LRU Page Replacement, Thrashing.

Module IV: Storage Management: File Concept, Access Methods, Protection, Implementation- File System Structure, Allocation Methods, Recovery, Secondary Storage- Overview, Disk Scheduling, Disk Management, RAID. I/O Systems- I/O Hardware, Application I/O Interface, Kernel I/O Subsystem.

3. REFERENCES

3.1 Core

- Abraham Silberschatz, Peter Baer Galvin, Greg Gagne-Operating System Concepts, 10th Edition.

3.2 Additional

- P. Balakrishna Prasad- Operating Systems and Systems Programming, 5th Edition.
- Achyut S Godbole and Atul Kahate - Operating systems, McGrawhill
- George Coulouris, Jean Dollimore, Tim Kindberg, Gordon Blair – Distributed Systems, Concepts and Designs, 5th Edition

3.3 Assignment and activities

Comparison of different Operating Systems using above functionalities- DOS, WINDOWS, UNIX, LINUX, etc.

PC1673: MAJOR PROJECT

1. AIM

- To expose student to industry-standard project practices, through a real-life project work under time and deliverable constraints, applying the knowledge acquired through various courses.

2. OBJECTIVES

- To provide an opportunity to apply the knowledge gained through various courses in solving a real-life problem
- To provide an opportunity to practice different phases of software/system development life cycle
- To introduce the student to a professional environment and/or style typical of a global IT industry
- To provide an opportunity for structured team work and project management
- To provide an opportunity for effective, real-life, technical documentation
- To provide an opportunity to practice time, resource and person management.

3. PROJECT GUIDELINES

- Group Size – Maximum 4, most preferably- 3
- No. of records – No. of group members + 1 (Department copy)

- Certificate should include the names of all members

The minimal phases for the project are: Project feasibility, Investigation of system requirements, Data and Process Modeling, System Design, Program design, Program coding and unit testing, System integration, System implementation and acceptance testing.

3.1 Planning the Project: The Major Project is an involved exercise which has to be planned well in advance. Related reading, training and discussions should start from semester 5 itself.

3.2 Selection of project work: Project work could be of 3 types:

a) Developing solution for a real-life problem: In this case, a requirement for developing a computer-based solution already exists and the different stages of system development life cycle is to be implemented successfully. Examples are Accounting Software Package for a particular organization, Computerization of administrative functions of an organization, Web Based Commerce, etc. The scope for creativity and exploration in such projects is limited, but if done meticulously, valuable experience in the industrial context can be gained.

(b) Innovative Product development: These are projects where a clear-cut requirement for developing a computer-based solution may not be existing, but a possible utility for the same is conceived by the proposer. An Example is a Malayalam Language Editor with Spell Checker, Computer Music Software for Indian Music, Heat Engines Simulation Software for eLearning, Digital Water Marking Software etc.

(c) Research level project: These are projects which involve research and development and may not be as structured and clear cut as in the above case. Examples are Malayalam Character Recognition, Neural Net Based Speech Recogniser, Biometric Systems, Machine Translation System etc. These projects provide more challenging opportunities to students and can be attempted.

If any student identifies proper support in terms of guidance, technology and references from External organizations and also the supervisors are convinced of the ability of the student(s) to take up the project, it shall be permitted. The methodology and reporting of such projects could be markedly different from type (a) and is left to the proposer/external supervisor of the projects.

3.3 Selection of Team: To meet the stated objectives, it is imperative that Major Project is done through a team effort. Though it would be ideal to select the team members at random (drawing lots) and this should be strongly recommended, due to practical considerations, students may also be given the choice of forming themselves into teams preferably **3** in numbers up to a maximum of **4** members (teams less than 3 members may be permitted in certain cases, for valid reasons). A gender mix should also be strongly suggested. A team leader shall be elected through drawing lots. Teams shall maintain team meeting minutes and ensure that every team member has tasks assigned in writing. Team meeting minutes shall form a part of the Project Report. Even if students are doing projects as groups, each one must independently take up different modules of the work and must submit the reports also independently (though, in such cases, some common materials are permissible). Evaluation will also be done independently.

3.4 Selection of Tools: No restrictions shall be placed on the students in the choice of platforms/tools/languages to be utilized for their project work, though open source is strongly recommended, wherever possible. No value shall be placed on the use of tools in the evaluation of the project.

3.5 Selection of Organization & Guide: No restrictions shall be placed on the students in the choice of organization where project work may be done, in terms of locality, type (public/private) etc. It is the duty of the Head of Institute/Principal of College to ensure that the Aim, Objectives and full project guidelines are communicated to the external organization. The guide should ideally be a post-graduate with minimum 2 years of work experience.

Students may also choose to do project in the college/institute (or partially in the college/institute and partially in an external organization), especially product-based work, but in such cases the supervisors must ensure that (i) industry practices are followed (ii) the students undertake a planned visit to an IT industry with international operations to make up for the loss of experience and (iii) the service of an external guide with industry experience is obtained.

3.6 Project Management: Head of Department /Institute should publish a list of students, projects topics, internal guide and external organization (if any) and teams agreed, before the end of semester 5. Changes in this list may be permitted for valid reasons and shall be considered favourably by Head of Department /Institute any time before commencement of the project. Any

request for change after commencement should be considered by a committee of 3 teachers and their recommendation shall be accepted by Head of Department/ Institute.

Gantt-chart of proposed activities and a draft statement of project deliverables (which may subsequently be altered if justified) should be prepared before the commencement of the project. The actual completion of each phase should be noted on the chart in the course of the project work. Team meetings should document the progress of the project. Students should submit a fortnightly report of progress which could be indication of percentage of completion marked on the original Gantt-chart, with any notes attached. Students should ideally keep a daily activity log sheet. Changes in the submitted documents are possible, as project development is essentially an evolutionary process. The project guide must ensure that changes are necessary due to the knowledge gained in succeeding phases of the project. The date of Completion of a phase should be brought forward if the changes made are deemed to be errors and not due to additional knowledge gained from a succeeding phase.

3.7 Documentation:

The following are the major guidelines: The final outer dimensions of the report shall be 21 cm X 30 cm. The colour of the flap cover shall be light green. Only hard binding should be done, with title of the Project and the words "< TITLE> BSc (PCA) Project Report 2021" displayed on the spine in 20 point, Bold, Times New Roman. It is highly recommended that Latex be used for documentation.

- The text of the report should be set in 12 pt, Times New Roman, 1.5 Spaced.
- Headings should be set as follows: CHAPTER HEADINGS 20 pt, Times New Roman, Bold, All Caps, Centered.

1. SECTION HEADINGS 12 pt, Times New Roman, Bold, All Caps, Left Adjusted.

1. 1 Section Sub-headings 12 pt, Times New Roman, Bold, Left Adjusted.

Titles of Figures, Tables etc are done in 12 point, times New Roman, Italics, Centered.

PROJECT REPORT

<DEPARTMENT NAME>

<COLLEGE NAME>

<EMBLEM>

<PROJECT TITLE>

Submitted by <STUDENT NAME (REG. NO.)>

Submitted in partial fulfilment of the Requirements for the award of

B.Sc. Physics and Computer Applications degree,

2021 University of Kerala

Some general guidelines on documentation stylistics are:

- Double quotes and single quotes should be used only when essential. Words put in quotes are better highlighted by setting them in italics. E.g.: This process is known as “morphing”. This process is known as *morphing*.
- Page numbers shall be set at right hand top corner, paragraph indent shall be set as 3.
- Only single space need be left above a section or sub-section heading and no space may be left after them.
- Certificate should be in the format: “Certified that this report titled.....is a bonafide record of the project work done by Sri/Kum.....under our supervision and guidance, towards partial fulfillment of the requirements for the award of the Degree of BSc (Physics and Computer Applications) of the University of Kerala” with dated signatures of Internal Guide, external guide and also Head of Department/Institute.
- If the project is done in an external organization, another certificates on the letterhead of the organization is required: “Certified that his report titled.....is a bonafide record of the project work done by Sri/Kum.....under any supervision and guidance, at theDepartment of..... (Organization) towards partial fulfilment of the requirements for the award of the Degree of BSc (Physics and Computer Applications) of the University of Kerala”.
- References shall be IEEE format (see any IEEE magazine or transaction). Take care in use of italics and punctuation. While doing the project, keep note of all books you refer, in the correct format, and include them in alphabetical order in your reference list. E.g.: A book is cited as: Kartalopoulos, S V Understanding Neural Networks and Fuzzy Logic, BPB Publishers, 1996, pp. 21-27. (pp.21-27 indicates that pages 21-27 have been referred. If the whole book is being referred, this may be omitted. If a single page is referred, say 7, it may be cited as p.7).
- **Report writing is NOT a hasty activity done after finishing the project.** Students must try to develop the report along with the work, so as to give it flesh and blood. Drafts should be read, modified, spell checked and grammar checked at least thrice during the course of the project and before a final printout is taken, the same may be got approved from the internal guide.
- The students should send two interim reports after the analysis and design phases of the project to internal guides. This will also help the students in their report writing.
- A soft copy of the complete documentation, including source code, should be maintained for any clarification during assessments.

- The Gantt chart, fortnightly progress reports recorded in team meeting minutes mentioned in section 3.5 should appear as appendix to the project report.

Regarding the body of the report, as an indicative example, the following is given (though students should not attempt to fit every kind of project report into this format):

- Organizational overview (of the client organization, where applicable)
- Description of the present system
- Limitations of the present system
- The Proposed system- Its advantages and features
- Context diagram of the proposed system.
- DFD of the proposed system with at least one additional level of Expansion
- Structure Chart/E-R diagrams of the System
- System flowchart
- Files or tables (for DBMS projects) list. Class names to be entered for each file in OO systems.
- List of fields or attributes (for DBMS projects) in each file or table.
- File table that shows the files/tables used by each program and the files are read, written to, updated, queried or reports were produced from them.
- Reports List with column headings and summary information for each report.
- System Coding and variable/file/table naming conventions
- System controls and standards
- Screen layouts for each data entry screen.
- Report formats for each report.

Program documentation is suggested on the following lines:

- Program id
- Program function explanation
- Program level pseudocode or flowchart.
- Data entry screen (reproduced from system documentation).
- Report layout (reproduced from system documentations)
- Decision tables, decision trees, with English Explanation where necessary.
- Program listing
- Test data
- Test results.

3.8 Methodology:

Wherever applicable, object-oriented approach should be used for software development. The project report should generally contain details of the following steps (*though students should not attempt to fit every kind of project into this format*):

(a) Analysis

- Study of existing systems and its drawbacks
- Understanding the functionalities of the system in detail
- Preparation of requirements
- Conduct of Feasibility study
- Development of DFD/use case diagrams

(b) Design

- Design of each subsystems/modules
- Design of each classes
- Design of Algorithms for problem solving
- User interface /Input/ Output Design
- Any other steps if necessary

(c) Coding and Implementation

(d) Testing

(e) Security, Backup and Recovery Mechanisms

(f) On line help and User Manuals

(g) Upgradability Possibilities

3.9 Project IPR & Utilization: The intellectual property rights in all project work done by the students shall vest with the University of Kerala, except in cases where some external organizations seek undertaking from students to concede IPR in all work done in their organization or under their guidance. Where possible, students should attempt to obtain at least a joint IPR for the University. In cases where project works are of public utility, students shall be asked to publish their work including source code and documentation, in so far as their rights are clear.

4. REFERENCES

4. 1 Core

- S A Kelkar, *Software Project Management*, Prentice Hall of India
- W Alan Randolph, Barry Z. Posner, *Effective project planning and management*, PHI

4.2 Additional

- Greg Mandanis, *Software Project Management Kit for Dummies*, IDG Books Joel Henry, *Software Project management*
- Frederic P B, Mythical Man-month, *Essays on Software Engineering*, Addison Wesley David Lamport, *Latex: A document Preparation System*, 2/e, Pearson Edn

5. EVALUATION

5.1 Criteria for external evaluation of Major Project

External evaluation is done by an external examiner appointed by the University

The following components are to be assessed for the End Semester Evaluation of the Major Project:

- Quality of documentation- 30 marks
- Presentation of work- 25 marks
- Viva - 25 marks

Total - 80 marks

5.2 Criteria for internal evaluation of Major Project

Internal evaluation is be done by conducting a viva voce by a team of evaluators comprising of the concerned guides and/or Head of the Department. The following are the components for internal evaluation of the Major Project:

- Presentation of the work-5 marks
- Individual involvement & team work/ Attendance- 5marks
- Timely submission and assessment of 2 interim reports -10 marks

Total - 20 marks